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Using confocal microscopy, we measure the packing geonaettlyinterdroplet forces as a function of the
osmotic pressure in a 3D emulsion system. We assume a hartintégriaction potential over a wide range of
volume fractions and attribute the observed nonlineattielassponse of the pressure with density to the first
corrections to the scaling laws of the microstructure awasnfthe critical point. The bulk modulus depends on
the excess contacts created under compression, whichttetiescorrection exponent=1.5. Microscopically,
the nonlinearities manifest themselves as a narrowingeodlistribution of the pressure per particle as a function
of the global pressure.

PACS numbers:

The elasticity of jammed sphere packings sheds light on they creaming under gravity, which gives a packing fraction of
broader question of how amorphous solids support stress [I. = 0.68+ 0.02, while centrifugation for 20 minutes at an
2]. In the limit of purely repulsive frictionless particleap-  acceleration rate of 30@UJeads to foam-like structures with
plicable to emulsions and foams, theoretical arguments sugp = 0.88+ 0.02, as shown in Figs. 1A,B, respectively. Al-
gest a singularity at the critical random close packing tgns lowing the emulsion to relax to its uncompressed state over a
@ [3, 4]. This singularity gives rise to the surprising scal- period of several days probes a broad range of intermediate
ing behavior of the elastic moduli and the microstructuee, a packing densities. The packings are analyzed using a Fourie
observed in numerical simulations [5-9]. In particulae &x-  transform algorithm to reconstruct the packing [13] andwa na
cess particle contacts created upon compression are tttough igation map tessellation to identify which particle resde
control the singularity in elasticity. However, an expegimal  each cell volume [15-17].
test of the scaling law between the coordination number and For each particle, we next obtain the local volume fraction
the applied pressure is lacking in the literature. This is beq_, the number of contacts and the pressure on that particle
cause it is experimentally difficult to access the regime/ver B.. The statistics of the local parameters in a given packing
close to the jamming transition with enough resolution 8t te yield the corresponding global parameters. The local velum
the scaling laws. Moreover, the contact network in 3D is typ-fraction is defined as the ratio of the volume of the partiole t
ically hidden from view. On the other hand, bulk measure-the volume of its navigation map cell, while the global pack-
ments have shown that compressed emulsions exhibit deviérg fraction is the total volume of the droplets divided b th
tions from the predicted linear scaling of the osmotic puess
with the global density above random close packing [10]sThi
scaling was conjectured to arise from the contact number de-
pendent anharmonicity observed in the potential of a single
compressed droplet [11]. While a stiffer potential couldde
to nonlinear elasticity in the limit of marginal rigidity [4the
making and breaking of contacts are other plausible sources
for the deviation [12]. A microscopic experimental approac
is therefore needed to decipher the origin of the macroscopi
elastic response of the system.

P=2.2kPa

Here we confocally image compressed emulsions to mea- @ 1opm 47
sure the packing geometry and the interdroplet forces in 3D,
from which we then infer the scaling laws between the ap-
plied pressurd®, the average number of contagtsand the
global densityg away from the critical point. The statisti-
cal fluctuations of these quantities within the packing give
us additional insight into the mechanisms of stress trasismi
sion in this amorphous medium. The oil-in-water emulsion
system described in references [10, 13] is athermal with an
average droplet radiudR) = 2.5 pm and a polydispersity of F|G. 1: (Color online) Confocal 3D images for emulsions cned
25% preventing crystallization [14]. The refractive index under gravity in (a) and compressedPat 2.2kPa by uniaxial cen-
matched emulsion is transparent and the Nile Red dye re¥ifugation in (b). (c) A zoom of two reconstructed dropl&ibeled
veals the 3D packing of droplets using a confocal microscop@ andp shows their geometric overlap aré&P, which is used to
(Leica TCS SP5 II). The lowest compression rate is achievegstimate the interdroplet force.
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FIG. 2: (Color online) Scaling laws for the excess averagalmer of contact$z with the change in global densidbp= (¢— @) in (a) and the
applied pressurdP = (P — ) in (b). A parametric plot obP versusd@in (c) implies the nonlinear scaling law, in agreement witevous
bulk measurements. The power-law fits are shown on log-latesdn the insets. (d) Probability density distributiofighe pressure per
particle P_ rescaled by the mean as a function of the applied pressure.inkt shows the corresponding coefficients of variation f&
all measured distributions. The pressure fluctuations asé fit with exponential tails at low pressures and a Gausdigtrnibution at high
pressure.

volume of the box. To determine the contact network, wepression. In addition, the ability to lose or create corgtést
test whether there is a geometric overlap between the recoanother source of nonlinearity [12].

structed spheres [18], as shown in Fig. 1C. This procedure The measurement of the forces then allows us to calculate
leads to an estimate of the mean contact nurnh).3, where  the local pressure per partidie, which is equal to the trace
the uncertainty is due to the resolution limit of the micrmse.  of the corresponding Cauchy stress tensr,

Moreover, the area of overlap?, is proportional to the re- 1
pulsive interdroplet forc& %R, which is given by the Princen (. _— ¥ (FOProP | pOPOR) 2)
J 6V I J )l
model [19]: B
Fap _ iAdB- (1) where indiced, j represent vector projections of each con-

tact forceF“®, V¥ is the volume of the navigation cell of the

_ dropleta, r® is a vector from the center af to its point
where the weighted radiug™® = %’ﬁx and the interfacial of contact with the dropleB, and the sum of the force mo-
tensiono = 9.2 mN/m. For small deformations, this model ment tensor is taken over all contacting droplets. In order t
gives an essentially linear force law. This result is coorob find the global pressure we calculate the global stress ten-
rated by the fact that the geometric overl&ff agrees with  sor by summing over all spheresand all contact§ and di-

the area of highlighted fluorescence intensity between theiding the sum by the total volume of the packing. Pressure
droplets, i.e. the area of deformation [20]. Moreover, mini calculated in this way is within.05kPa of the average pres-
mizing the energy of this system of linear springs to satisfysure over the individual particles. We find that the diagonal
force balance does not move any of the particles beyond thelements of the global stress tensor are close to each other i
resolution of the technique, which is one third of the voxelmagnitude, suggesting that the compression of the emdision
size, i.e. 100nm. Note that the incompressibility of the Emu isotropic due to the absence of friction. We repeat these mea
sion leads to a divergence of the pressure at very high consurements on 50 samples with global pressure values ranging
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FIG. 3: (Color online) Probability density distribution§local parameterg, in (a) andg_ in (b) are rescaled by the mean for three different
global pressure values. Insets show the correspondin@iaents of variation, CV, for all measured distributionshelTdata are well fit with
the granocentric model.

from 0.27+ 0.05 kPa under gravity t0.29+ 0.05 kPa.Note  sity [22]. Our experiments are the first to test this relafion
that the lowest pressure that we measure is mostly due to tHectionless packings and in 3D, over a much broader range of
small error in the estimation of the droplet radii and cemter packing densities up to.® aboveg.. The data shows impor-

In fact, the calculated pressure due to gravity alone is onlyant deviations from the scaling prediction, explainedhel

~ 10 Pa, which is why we neglect it and subtract the mea- compining the two square root laws for the scaling of
sured pressure of. D7+ 0.05 kPa atp.. Note that upon cen-  excess contacts with density and pressure predicts a linear
trifugation, the droplets are deformed above the resaiutio  parametric relationship between pressure and densityienhe
the microscope a_nd_ thus the measurements of pressure dowp _ p _ P, = p05(pv71, P is the prefactor ang = 2 is the
to the resolution limit can be trusted. exponent in the harmonic interaction potential [3, 8]. How-
Let us first assess how the excess contacts grow with thever, the deviations of the data from the square root law in
global density. Our system of frictionless spheres reacheBig. 2B lead to the nonlinear relationship of pressure \&rsu
isostatic equilibrium at the critical point, which fixes #g-  density presented in Fig. 2C. These measurements are in good
erage coordination number @ = 2d, whered = 3 is the  agreement with those obtained from bulk experiments [10],
dimension [4, 21]. To deduce the volume fraction we takewhich measure the pressure macroscopically. The agreement
into account the shape deformation of each droplet away frorbetween the two data sets gives validity to the harmonic as-
its spherical shape, such that the droplet volume cannot beumption in Eq. (1) used to calculate the pressure in our sys-
larger than that of its cell. In Fig. 2A we show the scal-tem. In addition, the sum of forces on each particle is zero
ing of excess contacts with the square root of the packingo within the experimental error, i.e. less than 10% of the to
densitydz = z— z. = 2p/(0— @) = zo\/§p over the ex- tal force on a given particle. Consequently, a global energy
perimental range. This geometric result is in good agreeminimization that allows the particles to move to equilibmi
ment with previous numerical simulations and theoretical a does not move any of the particles beyond the resolution of
guments [4, 5, 8], as well as 2D data on frictional particBy [ the technique, which is one third of the voxel size. Therefor
and foams [23]. Moreover, the value of the prefaatoe 10.6  the observed deviations from the linear scaling may be a re-
is in good agreement with the one obtained from numerisult of the formation of contacts upon compression and ret th
cal simulations of bidisperse spheres close to the jammingroposed anharmonicity in the potential [11].

point, zp = 8.4+ 0.5 [8]. This fit determines a higher value  Theoretically, these rearrangements can be understood in
of @ = 0.68 for the polydisperse packing than the predictedierms of the corrections to scaling away from the criticahpo
monodisperse random close packing dengity-= 0.64 [24]. |t has been shown that for generic random elastic netwoliks, a
The obtained value is in excellent agreement with the densitihe e|astic moduli must vanish linearly with the excess dor
measured at the lowest pressure. nationG ~ B ~ 8z[3, 25, 26], as is observed numerically [9].
By contrast, the scaling of excess contacts with the applietHowever, packings of particles differ from random networks
pressure in Fig. 2B cannot be fit by the square root law prein the following sense: their geometry is constrained by the
dicted for a network of harmonic spheres close to the jammindact that all the contact forces between the particles ase po
point [4]: 8z ~ /P — Pc, whereP; = 0.27kPa is the residual itive. It was shown that this constraint implies that thekbul
pressure under gravity. This scaling behavior was observeahodulus must have an additional contribution that does not
earlier in simulations of harmonic, frictionless parte[8, 8].  vanish at jamming, that iB = @dP/0¢ ~ C; + C,8z, where
Surprisingly, such a scaling was observed experimentally i C; andC; are constants [9]. Moreover, the parameéehas
the case of frictional disks over a narrow range of 1% in denbeen shown to govern the crossover from the isostatic behav-
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ior close to jamming to the continuum behavior at the largebe contacts to ensure rigidity. The good agreement between
scale [27]. Since the scaling relatidon~ \/§pholds overthe the data and the model suggests that random processes on the
experimental range in Fig. 2A, we gt~ C; +C,+/39[25].  level of the first neighbor shell are sufficient in explainthg

If we assume that, apart from the creation of new contactgjiversity of local configurations.

no plastic rearrangements occur, this equation appliealfor  In conclusion, our data show corrections to the linear scal-

@ and, combined wittdz ~ /3@, can be integrated and ex- ing of the pressure with density that arise because the bulk

panded to give the two leading order terms modulus is not constant near jamming, but depends linearly o
P_p_p P a 3 the excess contacts in the force network. We also show that th
—Pe=Po(@— @) + P10 @) ) interaction potential is nearly harmonic, independenthef t

whereP, = 0.27 kPa is the experimental value of the pressurecompression. Therefore, the first correction to scalingevh

at the lowest compressioRy = 3.0 kPa andP, = 14.8 kPa  only takes into account the creation of contacts but noi-part

are prefactors obtained from the fit of the data in Fig. 2C, andle rearrangements or the incompressibility of the dreplst

a = 1.5 is fixed as the universal exponent for the first correc-sufficient in accounting for the nonlinear dependence over a

tion to scaling. The data is in excellent agreement with thevide range of densities. This study reveals the mechanism by

theory in the range up p= 0.18, beyond which the incom- which emulsions are stiff to compression and demonstrates

pressibility of the droplets causes a divergence in thespres  that confocal microscopy is a powerful tool to decouple the

Remarkably, converting the prefactey in the linear term to  geometric and stress-bearing elements of the anomalolds sca

the units of pressure defined in numerical simulations agbid ing of the bulk modulus in compressed emulsions.

perse packings close to jamming recovers the same value to We would like to acknowledge Matthieu Wyart for point-

one decimal place [8]. The success of the fit in Fig. 2C withing out the amplitude of the corrections to scaling and Eric

Eq. (3) implies that the data in Fig. 2B can also be explained i Vanden-Eijnden for enlightening discussions. J. B. holds a
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the fit in the figure. The prefactor values agree with the parader Award Number DMR-0820341 and the National Science
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the accuracy of the experimental data and the validity of the

model.

Microscopically, the distributions of the pressure per-par

ticle B for three different pressures are shown in Fig. 2D.
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