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Using confocal microscopy, we measure the packing geometryand interdroplet forces as a function of the
osmotic pressure in a 3D emulsion system. We assume a harmonic interaction potential over a wide range of
volume fractions and attribute the observed nonlinear elastic response of the pressure with density to the first
corrections to the scaling laws of the microstructure away from the critical point. The bulk modulus depends on
the excess contacts created under compression, which leadsto the correction exponentα= 1.5. Microscopically,
the nonlinearities manifest themselves as a narrowing of the distribution of the pressure per particle as a function
of the global pressure.

PACS numbers:

The elasticity of jammed sphere packings sheds light on the
broader question of how amorphous solids support stress [1,
2]. In the limit of purely repulsive frictionless particles, ap-
plicable to emulsions and foams, theoretical arguments sug-
gest a singularity at the critical random close packing density
φc [3, 4]. This singularity gives rise to the surprising scal-
ing behavior of the elastic moduli and the microstructure, as
observed in numerical simulations [5–9]. In particular, the ex-
cess particle contacts created upon compression are thought to
control the singularity in elasticity. However, an experimental
test of the scaling law between the coordination number and
the applied pressure is lacking in the literature. This is be-
cause it is experimentally difficult to access the regime very
close to the jamming transition with enough resolution to test
the scaling laws. Moreover, the contact network in 3D is typ-
ically hidden from view. On the other hand, bulk measure-
ments have shown that compressed emulsions exhibit devia-
tions from the predicted linear scaling of the osmotic pressure
with the global density above random close packing [10]. This
scaling was conjectured to arise from the contact number de-
pendent anharmonicity observed in the potential of a single
compressed droplet [11]. While a stiffer potential could lead
to nonlinear elasticity in the limit of marginal rigidity [4], the
making and breaking of contacts are other plausible sources
for the deviation [12]. A microscopic experimental approach
is therefore needed to decipher the origin of the macroscopic
elastic response of the system.

Here we confocally image compressed emulsions to mea-
sure the packing geometry and the interdroplet forces in 3D,
from which we then infer the scaling laws between the ap-
plied pressureP, the average number of contactsz, and the
global densityφ away from the critical point. The statisti-
cal fluctuations of these quantities within the packing give
us additional insight into the mechanisms of stress transmis-
sion in this amorphous medium. The oil-in-water emulsion
system described in references [10, 13] is athermal with an
average droplet radius〈R〉 = 2.5 µm and a polydispersity of
25% preventing crystallization [14]. The refractive index
matched emulsion is transparent and the Nile Red dye re-
veals the 3D packing of droplets using a confocal microscope
(Leica TCS SP5 II). The lowest compression rate is achieved

by creaming under gravity, which gives a packing fraction of
φc = 0.68± 0.02, while centrifugation for 20 minutes at an
acceleration rate of 3000g leads to foam-like structures with
φ = 0.88± 0.02, as shown in Figs. 1A,B, respectively. Al-
lowing the emulsion to relax to its uncompressed state over a
period of several days probes a broad range of intermediate
packing densities. The packings are analyzed using a Fourier
transform algorithm to reconstruct the packing [13] and a nav-
igation map tessellation to identify which particle resides in
each cell volume [15–17].

For each particle, we next obtain the local volume fraction
φL , the number of contactszL and the pressure on that particle
PL. The statistics of the local parameters in a given packing
yield the corresponding global parameters. The local volume
fraction is defined as the ratio of the volume of the particle to
the volume of its navigation map cell, while the global pack-
ing fraction is the total volume of the droplets divided by the

FIG. 1: (Color online) Confocal 3D images for emulsions creamed
under gravity in (a) and compressed atP= 2.2kPa by uniaxial cen-
trifugation in (b). (c) A zoom of two reconstructed dropletslabeled
α and β shows their geometric overlap areaAαβ, which is used to
estimate the interdroplet force.
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FIG. 2: (Color online) Scaling laws for the excess average number of contactsδzwith the change in global densityδφ = (φ−φc) in (a) and the
applied pressureδP= (P−Pc) in (b). A parametric plot ofδP versusδφ in (c) implies the nonlinear scaling law, in agreement with previous
bulk measurements. The power-law fits are shown on log-log scales in the insets. (d) Probability density distributions of the pressure per
particlePL rescaled by the mean as a function of the applied pressure. The inset shows the corresponding coefficients of variation, CV for
all measured distributions. The pressure fluctuations are best fit with exponential tails at low pressures and a Gaussiandistribution at high
pressure.

volume of the box. To determine the contact network, we
test whether there is a geometric overlap between the recon-
structed spheres [18], as shown in Fig. 1C. This procedure
leads to an estimate of the mean contact numberz±0.3, where
the uncertainty is due to the resolution limit of the microscope.
Moreover, the area of overlap,Aαβ, is proportional to the re-
pulsive interdroplet forceFαβ, which is given by the Princen
model [19]:

Fαβ =
σ

R̃αβ
Aαβ; (1)

where the weighted radius̃Rαβ = 2RαRβ

Rα+Rβ and the interfacial
tensionσ = 9.2 mN/m. For small deformations, this model
gives an essentially linear force law. This result is corrobo-
rated by the fact that the geometric overlapAαβ agrees with
the area of highlighted fluorescence intensity between the
droplets, i.e. the area of deformation [20]. Moreover, mini-
mizing the energy of this system of linear springs to satisfy
force balance does not move any of the particles beyond the
resolution of the technique, which is one third of the voxel
size, i.e. 100nm. Note that the incompressibility of the emul-
sion leads to a divergence of the pressure at very high com-

pression. In addition, the ability to lose or create contacts is
another source of nonlinearity [12].

The measurement of the forces then allows us to calculate
the local pressure per particlePL, which is equal to the trace
of the corresponding Cauchy stress tensor,sα:

sα
i j =

1
6Vα ∑

β

(
Fαβ

i rαβ
j +Fαβ

j rαβ
i

)
; (2)

where indicesi, j represent vector projections of each con-
tact forceFαβ, Vα is the volume of the navigation cell of the
droplet α, rαβ is a vector from the center ofα to its point
of contact with the dropletβ, and the sum of the force mo-
ment tensor is taken over all contacting droplets. In order to
find the global pressureP we calculate the global stress ten-
sor by summing over all spheresα and all contactsβ and di-
viding the sum by the total volume of the packing. Pressure
calculated in this way is within 0.05kPa of the average pres-
sure over the individual particles. We find that the diagonal
elements of the global stress tensor are close to each other in
magnitude, suggesting that the compression of the emulsionis
isotropic due to the absence of friction. We repeat these mea-
surements on 50 samples with global pressure values ranging
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FIG. 3: (Color online) Probability density distributions of local parameterszL in (a) andφL in (b) are rescaled by the mean for three different
global pressure values. Insets show the corresponding coefficients of variation, CV, for all measured distributions. The data are well fit with
the granocentric model.

from 0.27± 0.05 kPa under gravity to 2.29± 0.05 kPa.Note
that the lowest pressure that we measure is mostly due to the
small error in the estimation of the droplet radii and centers.
In fact, the calculated pressure due to gravity alone is only
∼ 10 Pa, which is why we neglect it and subtract the mea-
sured pressure of 0.27±0.05 kPa atφc. Note that upon cen-
trifugation, the droplets are deformed above the resolution of
the microscope and thus the measurements of pressure down
to the resolution limit can be trusted.

Let us first assess how the excess contacts grow with the
global density. Our system of frictionless spheres reaches
isostatic equilibrium at the critical point, which fixes itsav-
erage coordination number tozc = 2d, whered = 3 is the
dimension [4, 21]. To deduce the volume fraction we take
into account the shape deformation of each droplet away from
its spherical shape, such that the droplet volume cannot be
larger than that of its cell. In Fig. 2A we show the scal-
ing of excess contacts with the square root of the packing
density δz = z− zc = z0

√
(φ−φc) = z0

√
δφ over the ex-

perimental range. This geometric result is in good agree-
ment with previous numerical simulations and theoretical ar-
guments [4, 5, 8], as well as 2D data on frictional particles [22]
and foams [23]. Moreover, the value of the prefactorz0 = 10.6
is in good agreement with the one obtained from numeri-
cal simulations of bidisperse spheres close to the jamming
point, z0 = 8.4±0.5 [8]. This fit determines a higher value
of φc = 0.68 for the polydisperse packing than the predicted
monodisperse random close packing density,φc = 0.64 [24].
The obtained value is in excellent agreement with the density
measured at the lowest pressure.

By contrast, the scaling of excess contacts with the applied
pressure in Fig. 2B cannot be fit by the square root law pre-
dicted for a network of harmonic spheres close to the jamming
point [4]: δz∼

√
P−Pc, wherePc = 0.27kPa is the residual

pressure under gravity. This scaling behavior was observed
earlier in simulations of harmonic, frictionless particles [5, 8].
Surprisingly, such a scaling was observed experimentally in
the case of frictional disks over a narrow range of 1% in den-

sity [22]. Our experiments are the first to test this relationin
frictionless packings and in 3D, over a much broader range of
packing densities up to 0.2 aboveφc. The data shows impor-
tant deviations from the scaling prediction, explained below.

Combining the two square root laws for the scaling of
excess contacts with density and pressure predicts a linear
parametric relationship between pressure and density, where
δP = P−Pc = P0δφγ−1, P0 is the prefactor andγ = 2 is the
exponent in the harmonic interaction potential [3, 8]. How-
ever, the deviations of the data from the square root law in
Fig. 2B lead to the nonlinear relationship of pressure versus
density presented in Fig. 2C. These measurements are in good
agreement with those obtained from bulk experiments [10],
which measure the pressure macroscopically. The agreement
between the two data sets gives validity to the harmonic as-
sumption in Eq. (1) used to calculate the pressure in our sys-
tem. In addition, the sum of forces on each particle is zero
to within the experimental error, i.e. less than 10% of the to-
tal force on a given particle. Consequently, a global energy
minimization that allows the particles to move to equilibrium
does not move any of the particles beyond the resolution of
the technique, which is one third of the voxel size. Therefore,
the observed deviations from the linear scaling may be a re-
sult of the formation of contacts upon compression and not the
proposed anharmonicity in the potential [11].

Theoretically, these rearrangements can be understood in
terms of the corrections to scaling away from the critical point.
It has been shown that for generic random elastic networks, all
the elastic moduli must vanish linearly with the excess coordi-
nationG∼ B∼ δz [3, 25, 26], as is observed numerically [9].
However, packings of particles differ from random networks
in the following sense: their geometry is constrained by the
fact that all the contact forces between the particles are pos-
itive. It was shown that this constraint implies that the bulk
modulus must have an additional contribution that does not
vanish at jamming, that isB ≡ φ∂P/∂φ ≈ C1 +C2δz, where
C1 andC2 are constants [9]. Moreover, the parameterδz has
been shown to govern the crossover from the isostatic behav-
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ior close to jamming to the continuum behavior at the large
scale [27]. Since the scaling relationδz∼

√
δφ holds over the

experimental range in Fig. 2A, we getB≈C1+C′
2

√
δφ [25].

If we assume that, apart from the creation of new contacts,
no plastic rearrangements occur, this equation applies forall
φ and, combined withδz∼

√
δφ, can be integrated and ex-

panded to give the two leading order terms inδφ,

P−Pc = P0(φ−φc)+P1(φ−φc)
α (3)

wherePc = 0.27 kPa is the experimental value of the pressure
at the lowest compression,P0 = 3.0 kPa andP1 = 14.8 kPa
are prefactors obtained from the fit of the data in Fig. 2C, and
α = 1.5 is fixed as the universal exponent for the first correc-
tion to scaling. The data is in excellent agreement with the
theory in the range up toδφ = 0.18, beyond which the incom-
pressibility of the droplets causes a divergence in the pressure.
Remarkably, converting the prefactorP0 in the linear term to
the units of pressure defined in numerical simulations of bidis-
perse packings close to jamming recovers the same value to
one decimal place [8]. The success of the fit in Fig. 2C with
Eq. (3) implies that the data in Fig. 2B can also be explained in
terms of the corrections to the scaling of excess contacts with
pressure in the formδz= D1

√
δP−D2δP, where the prefac-

torsD1 = 4.3 kPa−1/2 andD2 = 0.8 kPa−1 are obtained from
the fit in the figure. The prefactor values agree with the para-
metric prediction of the fits in Figs. 2A, C, which testifies to
the accuracy of the experimental data and the validity of the
model.

Microscopically, the distributions of the pressure per par-
ticle PL for three different pressures are shown in Fig. 2D.
The tails of the distributions narrow down from exponen-
tial to Gaussian as a function of the applied pressure, as
shown in Fig. 2D. This is consistent with theoretical consid-
erations for the distribution of forces close to the jamming
point [13, 28, 29] and the randomization of stress that occurs
as the pressure is increased [30]. The change in shape of the
local distributions with the applied pressure contributesto the
nonlinear elastic response of the material. Finally, we show
the microscopic distributions ofzL and φL as a function of
pressure in Fig. 3. The distribution of the coordination number
at the lowest compression reveals the predicted isostatic value
for the average coordination number of frictionless spheres,
z= 6±0.3. This indicates that the system is close to the crit-
ical point. It is interesting to note that rescaling the contact
distribution by the mean collapses the distributions at different
pressures. This is also confirmed by the invariant coefficient
of variation shown in the inset. By contrast, the distributions
of local packing fraction do not collapse with the pressure,
but become more peaked. The distributions in Figs. 3A, B
are superimposed with the theoretical predictions of the gra-
nocentric model [16, 31], which takes the measured average
number of contacts, neighbors and the global density as inputs
and generates the local fluctuations in each input parameter.
This model is based on two local random processes: filling
the space around each particle with solid angles contributed
by the neighbors and choosing some of those neighbors to

be contacts to ensure rigidity. The good agreement between
the data and the model suggests that random processes on the
level of the first neighbor shell are sufficient in explainingthe
diversity of local configurations.

In conclusion, our data show corrections to the linear scal-
ing of the pressure with density that arise because the bulk
modulus is not constant near jamming, but depends linearly on
the excess contacts in the force network. We also show that the
interaction potential is nearly harmonic, independent of the
compression. Therefore, the first correction to scaling, which
only takes into account the creation of contacts but not parti-
cle rearrangements or the incompressibility of the droplets, is
sufficient in accounting for the nonlinear dependence over a
wide range of densities. This study reveals the mechanism by
which emulsions are stiff to compression and demonstrates
that confocal microscopy is a powerful tool to decouple the
geometric and stress-bearing elements of the anomalous scal-
ing of the bulk modulus in compressed emulsions.
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