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The use of quantum entanglement to study condensed matter systems has been flourishing in
critical systems and topological phases. Additionally, using real-space entanglement one can char-
acterize localized and delocalized phases of disordered fermion systems. Here we instead propose the
momentum-space entanglement spectrum as a means of characterizing disordered models. We show
that localization in 1D can be characterized by the momentum space entanglement between left and
right movers and illustrate our methods using explicit models with spatially correlated disorder that
exhibit phases which avoid complete Anderson localization. The momentum space entanglement
spectrum clearly reveals the location of delocalized states in the energy spectrum, can be used as
a signature of the phase transition between a delocalized and localized phase, and only requires a
single numerical diagonalization to yield clear results.

New light has been shed on quantum many-body
ground states via their entanglement properties.
Entanglement measures, such as the topological
entanglement entropy[1–5] and the entanglement
spectrum[6–13], with their origin in quantum in-
formation theory have begun to uncover subtle fea-
tures of topological insulators and systems with
topological order. One field where entanglement
characteristics have begun to make progress is in
disordered materials. For example, Ref. 14 and 15
showed a connection between the position-space
entanglement entropy and a multi-fractal scaling
exponent which was extended by Ref. 16 to estab-
lish a connection between Rényi entropies and the
multi-fractal spectrum. Additionally Ref. 17 and
18 showed that the level-spacing statistics of the
entanglement spectrum match the same statistical
ensemble as the energy spectrum. Since entangle-
ment in position-space captures information about
long-range correlations it is natural that it should
reveal information about (de-)localized states.

In this article we also consider the entanglement
characterization of disordered fermion models, but
from the perspective of momentum space instead of
position space. The advantage (and from another
perspective the disadvantage) of entanglement is
that it crucially depends on the way Hilbert space
is partitioned into two sectors. The partitioning
can be done in any way[19], though typically the
partition (or cut for short) is made in position-
space. Other types of cuts that have been studied
include orbital[20], particle [21], and spin cuts[22].
Momentum space cuts were studied for transla-
tionally invariant 1D spin-chains in Ref. 8 and 23,
but, as we mention below, this type of cut yields
no information for translationally-invariant, non-
interacting fermion systems. While a momentum-
space cut is useless when translation symmetry is
preserved, we show, however, that it does lead
to valuable information if the system is disor-
dered. Our main result is that the disorder scatter-

ing entangles different momentum states and the
momentum space entanglement spectrum shows
clean signatures to characterize localized and de-
localized states. Our technique is much more ef-
ficient than conventional measures of localization
because it only requires the diagonalization of a
single disorder configuration. In this work we fo-
cus solely on 1D models where the essential idea
is that right-moving states, which were delocalized
in the translationally invariant limit, remain delo-
calized if the disorder does not entangle them with
left-movers.

To illustrate localization transitions in 1D we
must use special classes of models as it is well
known that disordered, 1D electronic systems be-
come insulating due to the phenomenon of Ander-
son localization. An exception to Anderson lo-
calization in 1D was discovered by Dunlap et al.
who predicted that a model with spatially corre-
lated disorder, the so-called random dimer model
(RDM), could avoid complete localization (at least
in finite-size systems)[24]. The RDM model is de-
scribed by a tight-binding lattice Hamiltonian

H =

N∑
n=1

t
(
c†n+1cn + c†ncn+1

)
+

N∑
n=1

εnc
†
ncn, (1)

where n labels the N sites of the lattice, t is the
nearest neighbor hopping , and εn represents a site-
dependent energy. In the RDM the site energies,
which represent the random disorder have a spe-
cific structure: (i) εn can take two possible values
εa or εb (ii) the two energies are randomly placed
on each site with the constraint that when εa is
chosen it always placed on two consecutive sites
(thus a dimer, see Fig. 3). This constraint is what
renders the disorder spatially correlated. Dunlap
et al. showed that the RDM model possesses a
pair of delocalized eigenstates that can propagate
throughout the lattice without being localized by
the disorder and used this to explain the conduct-
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FIG. 1. Entanglement spectrum as the Fermi energy
is varied, with (a)εb = 0.0t, (b) −0.1t, and (c)−3.0t.
The red dashed lines denote the resonant energy. (d)
Entanglement spectrum as the disorder strength is var-
ied, with Ef = 0 fixed at the resonant energy. The red
dashed lines denote the critical point beyond which the
extended states of the random dimer model are lost.

ing polyaniline chain. These states are degenerate
and occur at an energy E = εa, which is termed
the resonant energy. An additional O(

√
N) states

in the neighborhood of the resonant energy are ex-
tended and lead to the (super-)diffusion of initially
localized states as long as |εa − εb| < 2t. Thus, a
measurable conductance can be observed in finite-
length wires or polymers[25]. The key property of
the RDM which enables the existence of extended
states is that the dimers have a local mirror sym-
metry which leads to a resonant energy with full
transmission[26]. If one were to perturb away from
the symmetric dimer structure using detuned en-
ergies εa and ε′a, the extended states would eventu-
ally disappear once the detuning was large enough.

The RDM can be further generalized to the “n-
mer” case in which chains of length n and en-
ergy εa are randomly placed throughout the lat-
tice; the n = 1 case corresponds to uncorrelated
disorder, and n = 2 to the RDM. The general
case has n − 1 resonant energies at En(m) =
εa − 2t cos (πm/n) , m = 1, · · · , n − 1. In what
follows, we will mainly focus on the n = 2 dimer
and n = 3 trimer (RTM) cases. Without loss of
generality we set εa = 0 so that the resonance en-
ergy E2 = 0 (E3 = ±t) for the dimer (trimer)
model and the disorder strength is quantified by
εb−εa = εb. For the RDM the delocalized states ex-
ist for |εb| < 2t and for the RTM delocalized states
at E3 = −t(+t) for −3t < εb < t(−t < εb < 3t).

In order to make contact with previous work,
and for comparison to our main results, we will
first consider the spatial entanglement of the RDM.
We divide the Hilbert space into two subspaces A
and B, which contain sites confined to the region
n ∈ [1, N/2] and n ∈ [N/2 + 1, N ], respectively.
We will focus on the single-particle entanglement
spectrum calculated via Peschel’s method which
considers the eigenvalues ζi of the correlation ma-
trix Cij = 〈Ω|c†i cj |Ω〉 where |Ω〉 is a free-fermion
ground state and i, j ∈ [1, N/2] [27]. The so-
called single-particle entanglement spectrum {ζi}
can be used to compute the eigenvalues of the re-
duced density matrix ρA and the Schmidt decom-
position of the ground state. The entanglement
entropy S = −

∑
i (ζi log ζi + (1− ζi) log(1− ζi))

can be determined purely from the {ζi} and we
see that eigenvalues of ζi = 0, 1 contribute no en-
tanglement whereas ζi = 1/2 contributes the max-
imum amount of entanglement. When we calcu-
late momentum-space entanglement later the only
difference is that i, j in Cij will refer to different
single-particle momenta, which are discrete indices
because N is finite, and they will be restricted to
lie in certain regions of momentum space instead
of position space.

In Figs. 1a,b,c we show the entanglement spec-
trum as a function of the Fermi energy for disor-
der strengths fixed at the values εb = 0.0t, −0.1t,
and −3.0t respectively (note that only one disor-
der realization is shown and no averaging has been
performed). For the clean system we see large en-
tanglement for all values of the Fermi-level within
the band. For εb = −0.1t we still see a lot of en-
tanglement and one can see by eye that there is
level-repulsion in the entanglement spectrum for
Fermi-energies in a window around the resonant
energy E = 0. This is reminiscent of the level re-
pulsion commonly seen in the energy spectrum for
energy ranges containing delocalized states, and
which was confirmed to exist in the entanglement
spectrum in Ref. [17]. Finally, for εb = −3.0t,
which is tuned to the localized insulating phase, we
see that the entanglement is suppressed compared
to the other figures with eigenvalues clustered near
ζ = 0 and ζ = 1 which heuristically signals the ab-
sence of delocalized states. In Fig. 1d, we show the
entanglement spectrum as a function of disorder,
with the Fermi level tuned exactly to the resonance
energy. Spatial entanglement appears to be more
pronounced when |εb| ≤ 2t, as expected in the de-
localized phase. There is a somewhat clear distinc-
tion between the localized and delocalized phases
based on the density of entanglement eigenvalues
away from ζ = 0, 1. In fact, even the highly entan-
gled modes in the localized phase are most likely
due to local entanglement i.e. localized states near
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FIG. 2. Entanglement spectrum as the Fermi energy is
varied for (a) disordered dimers (b) disordered trimers
for εb = −0.5t. Entanglement spectrum as the disorder
strength is varied, for (c) disordered dimers (d) and
disordered trimers for Ef at resonance.

the cut which happen to have weight on both sides
of the partition.

While some features of the phases of the RDM
are apparent from the spatial entanglement, we
will show that performing a momentum-space cut
leads to more explicit results. A trivial, but ulti-
mately illustrative example is to consider a mo-
mentum space cut in the translationally invari-
ant limit. In this limit, since momentum is con-
served, entanglement is completely absent and the
set of {ζi} will have a number of 1 (0) eigenval-
ues equal to the number of occupied (unoccupied)
single-particle momentum states which depends on
the Femi level. Thus, for a clean system, where
all states can be considered as delocalized plane-
waves, there is no entanglement. Once disorder is
turned on, momentum states are mixed and the
{ζi} will have more generic eigenvalues, but the
key to locating regions of extended states is to
search for Fermi-levels where the entanglement is
suppressed. This is the opposite of the spatial en-
tanglement paradigm. The other important con-
cept is that the clearest signatures are seen if the
momentum cut is chosen so that region A consists
of all the right-movers and B contains all the left-
movers. An essential ingredient for determining
the cut is thus the translationally invariant band-
structure which, as we will see in detail later, is cru-
cial for determining the the single-particle group
velocities and thus the best momentum cut.

For the RDM and RTM the relevant partitioned
subspaces have momenta restricted so that kA ∈

[0, π] and kB ∈ [π, 2π] since these regions make
up the left and right movers respectively. In Figs.
2a,b we show the resulting entanglement spectrum
for the RDM and RTM respectively as a func-
tion of the Fermi level, for this choice of partition.
The disorder strength was set at εb = −0.5t for
both the RDM and RTM. Remarkably, the reso-
nant energies are revealed with great clarity where
a marked suppression of entanglement occurs. In
the vicinity of the resonant energies we used an en-
tanglement threshold to numerically estimate that
O(
√
N) of the ζi approach either 0 or 1 and thus

have suppressed entanglement. On the other hand,
for Fermi energies away from the resonances, the
spectrum fills up with entangled eigenvalues due to
scattering between left-movers and right-movers.

In Figs. 2c,d we show the entanglement spec-
trum as a function of disorder strength for the
RDM at Fermi-level EF = E2(1) = 0 and the
RTM at Fermi-level EF = E3(1) = −t respectively.
It is clear from Fig. 2c that the entanglement is
strongly suppressed in the RDM up to the phase
transition at |εb| = 2t, where the extended states
are lost. Additionally, we want to emphasize that
no disorder averaging was needed to observe this
effect and all plots are for only one disorder realiza-
tion and one diagonalization. This makes the use
of momentum entanglement much more efficient
for large-size calculations than all conventional nu-
merical methods which require a disorder quench.
Similarly, for the RTM we see in Fig. 2d that the
state at E3(1) = −t only remains delocalized for
−3t < εb < t. One other feature of note is the sup-
pressed entanglement in the RTM for εb < −3t.
This effect is not generic and is due to a pathology
of n-mer models (for n > 2) in the strong disorder
regime, which is dominated by bound states local-
ized on the n-mers themselves near the resonant
energies. The position of the resonant Fermi-level
with respect to the energy of the n discrete modes
on each n-mer leads to this spurious suppression
which we will not discuss any further.

To understand this behavior of the RDM we
study the Hamiltonian in the momentum-space ba-
sis replacing cn = 1√

N

∑
k e

iknck in Eq.(1). This

leads to the expression

H =
∑
k

E(k)c†kck +
∑
k, k′

ε̃∆kc
†
kck′ , (2)

where E(k) = εa + 2t cos k. The matrix
elements ε̃∆k of the disorder potential read
ε̃∆k = (εb− εa) [δk,k′ − f (∆k, {ri})S(∆k)] , where

f(∆k, {ri}) = 1√
N

∑
i e

iri(k−k′), and S(∆k) =

1√
N

(
1 + ei(k−k

′)
)
. Here, ∆k = k′ − k, the ri

denote the random positions of the dimers, and
we have restored εa to show the dependence ex-
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FIG. 3. Profile of position (left) and Fourier (right)
distributions of the n-mer disorder potential, with n =
1, 2, 3 (top to bottom).

plicitly. The function f (∆k, {ri}) captures the
random part of the disorder since it depends ex-
plicitly on the positions of the dimers whereas
the structure-factor S(∆k) is a coherent sum of
phases, independent of any randomness. Expand-
ing the structure factor around Q = π, one obtains
S(∆k) ≈ −i√

N
(∆k −Q) + · · · , which, even after

convolution with f(∆k, {ri}), suppresses the scat-
tering events k → k′ + Q, as shown in Fig. 3b.
The generalization to the arbitrary n-mer case can
readily be made by replacing the structure factor
with Sn(∆k) = 1√

N

∑n−1
m=0 e

im(k−k′) which has ze-

roes at Qn(m) = 2πm/n, m = 1, · · · , n−1. In Fig.
3, we show examples of the disorder distribution in
both position and momentum space respectively,
for the n = 1, 2, 3 cases.

For generic weak disorder, scattering predomi-
nantly mixes degenerate single-particle momentum
states |q1,2〉. If the |q1,2〉 have opposite group ve-
locity then this mixing leads to backscattering, lo-
calization, and entanglement between left-movers
and right-movers. If we consider the RDM model,
then states satisfying q1−q2 = Q are never mixed.
A resultant suppression of momentum entangle-
ment occurs when this condition is met by degen-
erate states with opposite group velocity. For the
RDM the momenta at which the condition E(q1) =
E(q2) = E(q1 − Q) is satisfied are given by q1,2 =
±π/2. At these momenta the resonant energy for
the RDM is E2(1) = E (q1) = εa+2t cos (π/2) = εa
which is exactly what we noted earlier, though we
chose εa = 0 for convenience. It then follows that
the suppression of left and right-mover entangle-
ment matches the existence of extended states in
the RDM model near the resonant energy. This
connection constitutes the main result of this work.
By analogy with the dimer case, the resonant en-
ergies of the n-mer model are determined by sat-
isfying E(q) = E(q − Qn(m)). Thus, we see that,
whenever EF is at one of the resonant energies,

FIG. 4. (a) and (b): spatial and Fourier components
of V respectively. Fourier components were chosen to
vanish near k = π/2, 3π/2, and to be constant every-
where else. (c) and (d): entanglement spectrum as a
function of the Fermi level. The dispersion relation
is overlaid on the entanglement spectrum as a guide,
with the restrictions on A emphasized by the (solid)
orange segments. The (dashed) green segments corre-
spond to region B, which is traced out. The region
between the black horizontal dashed lines is the range
of Fermi energies over which one expects suppression
of entanglement according to the zeroes of Ṽ∆k

.

the absence of left and right-moving entanglement
is correlated with the presence of extended states
in the system, just like in the particular n = 2
dimer case.

Finally, we consider an artificial model in order
to verify that: (i) the presence of zeroes in the
momentum-space matrix elements generically lead
to resonances, regardless of the model-dependent
shape that the disorder might have; (ii) the in-
terpretation in terms of left and right-mover en-
tanglement and momentum space partitioning is
consistent. To accomplish (i), we construct a new
disorder distribution Vn such that Ṽ∆k = 0 for all
∆k, except those in some finite ranges for which we
set the magnitude to be a nonzero, constant value.
Disorder is introduced by randomizing the phases
of the scattering elements in momentum space. An
example profile of such a Vn and |Ṽ∆k| are shown
in Figs. 4a,b for a particular realization of the dis-
order. To address (ii), we implement an exclusively
next-nearest neighbor hopping model, so that the
group velocity becomes vg(k) = −4t sin 2k. In do-
ing this, we consider two possible partitions of the
Hilbert space: one choice corresponds to the re-
striction kA ∈ [0, π], which is what we chose for
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the RDM, and the other takes into account the new
location(s) of the left movers in momentum space,
so that kA ∈ [0, π/2]∪ [π, 3π/2]. The resulting en-
tanglement spectrum versus Fermi energy, for both
choices of partitions, is shown in Figs. 4c,d. The
dispersion relation is overlaid on the entanglement
spectrum as a guide, with the restrictions on A
schematically emphasized by the solid orange seg-
ments. The dashed green segments correspond to
region B, which is traced out. It is clear that the
left/right mover cut provides the cleaner signature
(since we are not getting spurious entanglement
from left/left and right/right coupling) and that
our interpretation of the delocalized states existing
where the Fourier components of Vn are vanishing
is correct.

We have shown that momentum space entangle-
ment contains valuable information for the identi-
fication of localized and delocalized states in disor-
dered free-fermion models. Furthermore, this was
achieved without any disorder averaging so that
large systems can easily be studied with a single
diagonalization. The next step is to generalize the
method to higher dimensions to see if the entan-
glement signatures are as clear as in 1D. It is not
obvious whether or not these results will easily gen-
eralize, but there will be some interesting features
of momentum space entanglement in higher dimen-
sional systems, and especially in topological phases
with 1D edge states and extended states buried in
a localized bulk state region. This method may
also provide a nice way to characterize disordered
interacting systems since it only requires a ground-
state wavefunction and not the excited states. Mo-
mentum space cuts could be carried out efficiently
for 1D interacting systems and may yield useful
information.
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