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We study the interaction between a ferromagnetically ordered medium and the surface states of a
topological insulator with a general surface termination that were identified recently [Phys. Rev. B
86, 081303(R) (2012)]. This interaction is strongly crystal face dependent and can generate chiral
states along edges between crystal facets even for a uniform magnetization. While magnetization
parallel to quintuple layers shifts the momentum of Dirac point, perpendicular magnetization lifts
the Kramers degeneracy at any Dirac points except on the side face where the spectrum remains
gapless and the Hall conductivity switches sign. Chiral states can be found at any edge that reverses
the projection of surface normal to the stacking direction of quintuple layers. Magnetization also
weakly hybridizes non cleavage surfaces.

PACS numbers: 71.70.Ej, 73.20.-r, 73.22.Gk, 73.43.-f

Introduction.— Since the discovery of topological in-
sulators (TI) [1–9] there has been tremendous interest
in their topologically protected surface states. Previ-
ous work has focused mainly on the cleavage surfaces
of Bi2Se3, or similar TI’s with R3̄m symmetry, that host
spin-momentum locked helical metals. Interestingly, a
quantum anomalous Hall (QAH) effect can be induced
by exchange coupling the surface electrons to a magnetic
insulator which lifts the Kramers degeneracy at the sur-
face Dirac point (DP). When the magnetization is per-
pendicular to the quintuple layers (QL), this introduces
a mass term into the cleavage surface state Hamiltonian,
and if the Fermi energy is in this gap, there is a half inte-
ger quantized Hall conductivity σH = e2/2h whose sign
is determined by the direction of perpendicular magne-
tization. Theory predicts a 1D chiral edge state on the
Bi2Se3 cleavage surface along a domain wall where the
perpendicular magnetization reverses direction [1, 4, 10].
The fabrication of such an interface that displays the
QAH effect poses a formidable experimental challenge.

In this work, we consider the effects of magnetic ex-
change coupling to topological surface states for a gen-
eral crystal termination and discover new geometries that
generically host 1D chiral edge channels. By breaking
T symmetry the surface magnetization: (i) shifts the
DP off T invariant momenta, (ii) couples non cleavage
surfaces, and (iii) lifts the Kramers degeneracy at any
DP except on the side face where the Hall conductivity
switches sign. We find that all three effects are crys-
tal face-dependent. Surprisingly, 1D gapless chiral states
can be induced at crystal edges without introducing a
magnetic domain wall, accessing the QAH effect in a ge-
ometry that should be readily accessible to experiment.
Interestingly, a recent experiment demonstrates bulk in-
tergrowth of Bi2Se3 and the room temperature ferromag-
net Fe7Se8 forms a “stack of cards” structure [11] that
offers an opportunity for exploring the face-dependent
interactions between TI surface states and ferromagnetic
materials. Additionally, magnetically doped TI’s show a
∼ 40 meV gap [12, 13] and a giant AH effect [14] on the

cleavage surface, providing a large out-of-plane Zeeman
field to engineer the QAH effect in our new geometries.

Topological surface states.— We start from a descrip-
tion of the low energy minimal model of Bi2Se3, followed
by a derivation of the effective Hamiltonian of topolog-
ical surface states near the DP of an arbitral face [15].
These apply generally to other TI’s with R3̄m symme-
try. Besides T and the parity inversion (P) symmetries,
Bi2Se3 crystal structure has a threefold rotational (C3)
symmetry along ẑ perpendicular to QL’s, and a twofold
rotational (C2) symmetry along Γ̄M̄ direction. We choose
[16] the parity operator P = τz and the time reversal op-
erator T = iKσy where K is the complex conjugate. To
linear order in k the k ·p bulk Hamiltonian that preserves
the above four symmetries has a unique form

Hbulk = −mτz + vzkzτy + vq(kyσx − kxσy)τx , (1)

where we assume vz, vq > 0. By matching the eigensys-
tems of TI with m > 0 and vacuum with m → −∞,
one can demonstrate the existence of topological surface
states [15]. The DP solution is determined by the oper-
ators S1 and is free under any rotation of the operators
S2. We first focus on the case with a crystal termina-
tion where the azimuthal angle is fixed (φ = 0) and later
generalize to situations where φ is allowed to vary be-
tween neighboring crystal facets. For an arbitrary face
Σ(θ) ≡ Σ(θ, φ = 0) (0 ≤ θ ≤ π) in Fig.1, S1 and S2

pseudospins read

S1 = {ατx + βσyτy, ατy − βσyτx, τz} ,
S2 = {ασx − βσzτz, σy, ασz + βσxτz} , (2)

where v3 =
√

(vz cos θ)2 + (vq sin θ)2, α = vz cos θ/v3 and

β = vq sin θ/v3. These pseudospins satisfy [Si
a, S

j
b] =

2iδabε
ijkSk

a . We derive [15] the topological surface state
Hamiltonian for face Σ(θ) to the linear order near DP,

H(θ) = v1k1 S
y
2 − vqky S

x
2 , (3)

where v1 = vzvq/v3. The surface band is the negative
eigenstate of Sx

1 and its chiral counterpart is localized on
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FIG. 1. The definition of crystal and local frames and the
sketch of surface state conduction band spin textures. k̂z
is perpendicular to QL’s. k̂3 is outward normal to the face
Σ(θ, φ) and k̂1 (k̂2) is in-plane tangent to the longitude (lat-

itude) circle with k̂2 = k̂3 × k̂1. The spin textures described

in the text are shown in local frames with k̂1 right and k̂2 up.

the opposite face. Thus the surface state Hilbert space is
reduced by half. The pseudospin (S2) texture of surface
states on a general face is topologically equivalent to the
helical metal found on the cleavage surface though its
energy dispersion is anisotropic in momentum. However,
the spin texture is different for each face [15] and is deter-
mined by the bulk symmetries. As shown in Fig.1, near
the DP the spin texture of a constant energy contour is
helical only on the top (θ = 0) and bottom (θ = π) sur-
faces, it is collapsed to one dimension on any side face
(θ = π/2), and it is tilted out-of-plane otherwise. Inter-

estingly on a side face with normal k̂x, the spin texture
is filtered into ±k̂y polarizations maximized at ky = 0
and vanishing at kz = 0. As a consequence, a Zeeman
exchange field that couples to the physical spin σ plays
qualitatively different roles on different crystal faces.

Physically, a mass term ∆Sz
2 or ∆Sz

2S
x
1 in Eq.(3) is

required to open an energy gap at the surface DP. This
amounts to introducing either one of the following exter-
nal perturbations that break T symmetry

H∆
1 = ∆1(ασz + βσxτz) , H∆

2 = ∆2σzτx . (4)

The H∆
1 terms depend on the surface orientation through

the θ dependence of α and β. On the cleavage surface
(β = 0) this perturbation is a Zeeman term that can be
induced by an exchange field, while on the side face (α =
0) it becomes σxτz which is negligibly small [17] since it
originates from the difference between electron spin g-
factors of Bi and Se [16]. In contrast, H∆

2 is independent
of the crystal face angle but it requires a parity breaking
interaction τx which seems to be infeasible.

Surface magnetization effects.— Now we consider a
magnetic thin film with uniform magnetization that pro-
vides an exchange coupling ∆ · σ to the spin of TI sur-

face states. Whether this breaking T symmetry coupling
opens a gap at the DP on face Σ(θ) is determined by
whether it generates any of the perturbations listed in
Eq.(4). Rewritten in the basis represented by S1 and S2,
the exchange coupling can be decomposed as follows:

∆xσx = α∆xS
x
2 + β∆xS

z
2S

z
1 , (5)

∆yσy = ∆yS
y
2 , (6)

∆zσz = α∆zS
z
2 − β∆zS

x
2S

z
1 . (7)

A topological surface state must be the negative eigen-
state of Sx

1 and its positive counterpart is localized on
the opposite face. Thus the two fields proportional to Sz

1

couple the surface states on different non cleavage faces
(β 6= 0). Although these two couplings play negligible
roles as the TI dimension becomes larger than the sur-
face state penetration length they can be important for
a sufficiently thin TI. As illustrated in Fig.2, these two
couplings hybridize the opposite surface states without
opening any energy gap. The Sx

2S
z
1 term breaks up the

two DP’s which repel each other in the k̂1 direction, lead-
ing to two zero energy nodes at vzkz = ±∆z and ky = 0
[18]. Sz

2S
z
1 field splits the two DP’s in energy, resulting

in a zero energy ellipse at v2
q k

2
y + v2

zk
2
z = ∆2

x [18].
For magnetization parallel to QL’s, the induced ex-

change terms ∆xS
x
2 and ∆yS

y
2 do not contain any mass

terms listed in Eq.(4), and thus not open gaps at any sur-
face DP’s. Instead, they break T symmetry by shifting
the DP from Γ̄ to a non T invariant momentum

k1 = −∆y

v1
, ky =

α∆x

vq
. (8)

Eq.(8) implies that magnetization only moves the DP on

the side face in ±k̂z direction. More generally, as the
surface state helicities are opposite for opposite faces,
the same magnetization moves their DP’s in opposite di-
rections in the crystal frame. Since a pair of opposite
side faces are also connected by the rotational symmetry
along k̂z, shifting the side face DP’s is allowed along k̂z

and forbidden along k̂y.
As shown in Eq.(7), the magnetization perpendicular

to QL’s introduces a field α∆zS
z
2 that behaves as H∆

1 .
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FIG. 1: (Color online) Feasible TI shapes that support the 1D chiral edge state in the presence of uniform perpendicular
magnetization on the surface. (a) A TI ball, (b) a TI slab and (c) a zigzag side of a TI. In all panels the faces from the upper
(lower) hemisphere are colored in light green (cyan) while the chiral states are represented by bold lines with arrows.

[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[5] X. Qi and S. Zhang, Physics Today 63, 33 (2010).
[6] F. Zhang et al., Phys. Rev. Lett. 106, 156801 (2011).

FIG. 2. Constant energy contour plot of the lowest conduction
band of the hybridized surface states on two opposite side
faces. (a) ∆x = 0, ∆z = 0.2; (b) ∆x = 0.2, ∆z = 0. We use
arbitrary units with vq = 1 and vz = 0.7.
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FIG. 3. Three TI shapes that support chiral edge states in
the presence of a uniform exchange field ∆zσz on the surface.
(a) A spherical TI, (b) a TI slab and (c) a TI with zigzag
side faces. In all panels the faces with θ < π/2 (θ > π/2) are
colored in light green (cyan), and the chiral edge states are
denoted by bold lines with arrows.

This mass breaks T symmetry by lifting the Kramers
degeneracy, leading to a surface state gap ∼ 2α∆z. Im-
portantly, on the closed surface of a compact TI this gap
is face-dependent: it is largest on the cleavage surface
(α = ±1) and it vanishes on the side face (α = 0) where
the mass switches sign.

1D chiral edge states.— We find that the momentum-
space Berry curvature becomes nontrivial when T sym-
metry is broken by the mass term α∆zS

z
2. For an arbi-

trary face, the Berry curvature reads

Ω
(s)

k̂3
(θ, k1, ky) = −sα∆zv1vq

2ε3
, (9)

where ε =
√
v2

1k
2
1 + v2

q k
2
y + α2∆2

z and s = +(−) denotes

the surface conduction (valence) band. The momenta are
measured from the shifted DP in Eq.(8) in the presence
of parallel magnetization. The orbital magnetic moment
[19, 20] carried by a surface state Bloch electron is

m
(s)

k̂3
(θ, k1, ky) = −α∆zmev1vq

ε2
µB , (10)

where me is the electron mass and µB is the Bohr magne-
ton. Unlike the Berry curvature, the orbital magnetiza-
tion is independent of the band index s. In the presence
of an electric field in the surface plane, a surface state
electron acquires an anomalous transverse velocity pro-
portional to the Berry curvature [19, 20], giving rise to
an intrinsic Hall conductivity

σH =
e2

2h

[
α∆z

ε(EF)
− sgn(α∆z)δs,+

]
, (11)

where EF is the Fermi energy. Provided that EF lies in
the surface gap, the surface band contributes e2/2h to
the Hall conductivity, with the sign given by sgn(α∆z).

This Hall conductivity is half integer quantized but
with opposite signs for crystal faces with surface normals

that have opposite z-projections (i.e. perpendicular to
QL’s), even though the surface magnetization is uniform.
Since ∆σH = e2/h across the interface, there must be a
chiral edge state channel whenever there is an edge or
a narrow side face that connects two faces whose surface
normals have opposite z-projections. This is the criterion
for the existence of chiral edge states in the presence of
uniform ∆zσz magnetization on the TI surface. Uniform
magnetization may not be easy to realize, as surface tends
to produce easy axis anisotropy for the magnetic order.
However, our proposal will be realized, if the two easy
axes have z-projections with the same sign.

We now propose three TI shapes that support chiral
edge states in the presence of surface magnetization per-
pendicular to QL’s and uniform on all relevant faces. For
a spherical TI, shown in Fig.3(a), the mass term and the
Hall conductivity switch sign across the equator (α = 0).
Therefore, there is a chiral channel along the equator for
gapless edge states. A TI slab depicted in Fig.3(b) is
topologically equivalent in shape to a spherical TI, with
the upper (lower) hemisphere becoming the top (bottom)
cleavage surface. Similarly, there is a gapless chiral state
along the side faces when the exchange field effect dom-
inates over the finite size effect. The QAH effect in this
bilayer (BL) system, studied before [10, 21, 22] and a spe-
cial case where our criterion applies, can be alternatively
described in the crystal frame as follows:

HBL = vq(kyσx − kxσy)τx −mtτz + ∆zσz , (12)

where τx = ± respectively represent the bottom and top
surfaces and mt is a trivial mass due to finite size tun-
neling between the surfaces. We further obtain the four-
band energy dispersions:

εBL = ±
√
v2
q k

2
q + (mt ±∆z)2 . (13)

As the exchange field strength ∆z is turned up from
zero, the energy gap closes at ∆z = ±mt and re-
opens, indicating the topological distinction between the
magnetization-induced gap with respect to the tunneling-
induced gap. Further analysis using Eq.(11) shows the
two valence bands have a total e2/h contribution to σH

when |∆z| > |mt|, leading to a QAH effect. This analysis
applies generally to any other slab with θ 6= π/2.

Our criterion also predicts chiral edge states on a TI
with a more remarkable shape, as depicted in Fig.3(c). In
the intergrowth with a ferromagnet [11], a TI often has
zigzag side faces. Each convex corner of the zigzag side
connects an upper face with θN < π/2 and a lower face
with θS > π/2 while a concave corner connects the two
faces upside down. As a consequence, the zigzag side
exhibits staggered edge states with opposite chiralities
along the convex and concave corners. In the presence of
an electric field perpendicular to the average zigzag side
face, there will be a net chiral current carried by edge
states at the convex or concave corners depending on the
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FIG. 4. (a) A schematic TI crystal that has a top face with
0 < θt < π/2, a bottom face with θb = π, and four surround-
ing faces with the same θs and π/2 < θs < π. (b) The top
view of (a). When perpendicular magnetization is present,
there is a chiral state along the edges of the top face but no
one on the bottom edges. The four surrounding faces have
∆φ = φs − φt = 0, π/2, π, and 3π/2, respectively.[23]

electric polarity, while for an electric field perpendicu-
lar to QL’s edge states with opposite chiralities are both
populated and the Hall currents become counterpropa-
gating, canceling each other out on average.

In the limit of θN,S ' π/2, the surface state Hilbert
spaces for the upper and lower faces are both the negative
eigenstate of Sx

1 (π/2) = σyτy. The chiral corner states
are also pseudospin filtered, since they satisfy Sx

2 (π/2) =
σzτz = ±1 where the sign depends on the polarity of the
∆zσz magnetization. These two features are analogous
to the case of a magnetic domain wall deposited on the
cleavage surface, where the chiral edge state is not only
orbital chiral but also spin filtered.

In the opposite limit in which θN ' 0 and θS ' π,
these zigzag side faces become a chain of staggered top
and bottom cleavage surfaces, in which the two opposite
edges of each face are joined respectively to the opposite
edges of the neighboring upper and lower faces. Our pro-
posed criterion can be applied to each pair of neighboring
faces. The origin of their chiral corner states can be also
intuitively understood by our previous analysis (Eq.(12))
designed for parallel surfaces. In such a limit, the top
and bottom surface states have zero orbital overlap in
the sense that they are negative and positive eigenstates
of τx, respectively. The chiral edge state is not spin fil-
tered either because of the opposite helicities of the two
surface states. These features are quite different from
the situation for two joined side faces or with a magnetic
domain wall on the cleavage plane.

We now turn on the azimuthal angle. Since the bulk
crystal has C3 symmetry along k̂z which upgrades to con-
tinuous rotational symmetry in linear order we can set
φ = 0 along an arbitrary axis perpendicular to ẑ. But
more generally for two crystal faces joined at an edge
with normals along different azimuthal angles, we need
to specify their difference ∆φ to determine the chirality
of their edge state. In fact, the criterion for the exis-
tence of chiral edge state at a TI corner can be relaxed to

θ(Σσ) < π/2 and θ(Σσ̄) > π/2 with σ = S orN , where
ΣS,N(θ, φ) could even be curved faces or have different
azimuthal angles. Fig.4 sketches a chiral state along the
edges that connect a top face with four surrounding faces
that have the same θs but different φs.

Discussions.— In conclusion, we provide a general the-
ory that allows a thorough understanding of the interac-
tion of TI surface states with a ferromagnetically ordered
medium, with a surprising criterion for the presence of a
chiral edge state (QAH effect) with no need of magnetic
anisotropy. This approach may also simplify the inter-
ferometry of Majorana fermions [24, 25] that requires to
generate chiral edge states on the TI surface. Our pro-
posed chiral edge states may be accessible by STM or in
multi-terminal transport at the corners of a TI zigzag side
that form [11] in the intergrowth with a ferromagnet. Our
work may shed light on cleavage surface transport exper-
iments where it is crucial to minimize the influence from
the side face, i.e., making samples in the square shape.
On the other hand, this work also provides a new strategy
for the fabrication of electronic devices that exploit the
crystal face dependence of TI surface state phenomena.
We thus suggest reexamining anomalies in existing data
by taking into account the dependence of surface states
on the surface orientation and look forward to more ex-
plorations on the non cleavage surfaces.

A Zeeman field that couples to spin could also be in-
troduced by doping TI’s with magnetic impurities [12–
14, 21, 26–42] or partially by applying a parallel magnetic
field [43, 44] instead of depositing a ferromagnetic film
[11, 22, 45–47] on the surface. With these experimental
progresses, QAH effects are likely to occur when their TI
samples are fabricated in geometries similar to Fig.3 or
Fig.4. We have noticed that a very special case of our
proposed physics, i.e., a QAH effect in a magnetic doped
Bi2Se3 slab with only two cleavage surfaces [10, 21, 22]
and thickness less than six QL’s, has been demonstrated
by the first principle calculations [21]. While observing
QAH effects in thin films is still experimentally challeng-
ing, our newly discovered criterion does not necessarily
require such a limited geometry and constitutes a sig-
nificant advance. Finally we point out that the surface
magnetization can be built into the topological boundary
condition of TI’s as a family of surface potentials [15] that
break T symmetry but preserve P symmetry.
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[34] P. Haazen, J. Laloë, T. Nummy, H. Swagten, P. Jarillo-
Herrero, D. Heiman, and J. Moodera, Appl. Phys. Lett.
100, 082404 (2012).

[35] G. Rosenberg and M. Franz, Phys. Rev. B 85, 195119
(2012).

[36] T. M. Schmidt, R. H. Miwa and A. Fazzio,
arXiv:1107.3810 (2011).

[37] J. Honolka, A. Khajetoorians, V. Sessi, T. Wehling, S.
Stepanow, J. Mi, B. Iversen, T. Schlenk, J. Wiebe, N.
Brookes, A. Lichtenstein, Ph. Hofmann, K. Kern, and R.
Wiesendanger, arXiv:1112.4621 (2011).

[38] Z. Salman, E. Pomjakushina, V. Pomjakushin, A.
Kanigel, K. Chashka, K. Conder, E. Morenzoni, T.
Prokscha, K. Sedlak, and A. Suter, arXiv:1203.4850
(2012).

[39] Jian-Min Zhang, Wenguang Zhu, Ying Zhang, Di Xiao,
Yugui Yao, arXiv:1205.3936 (2012).

[40] D. Zhang, A. Richardella, S. Xu, D. Rench, A. Kan-
dala, T. Flanagan, H. Beidenkopf, A. Yeats, B. Buckley,
P. Klimov, D. Awschalom, A. Yazdani, P. Schiffer, M.
Hasan, N. Samarth, arXiv:1206.2908 (2012).

[41] S. Qiao, Z. Liu, F. Ji, Bin Li, F. Xi, K. Kuroda, M. Ye,
K. Miyamoto and A. Kimura, March Meeting (2012).

[42] L. Zhao, Z. Chen, L. Krusin-Elbaum, March Meeting
(2012).

[43] S. Pershoguba and V. Yakovenko, March Meeting (2012).
[44] F. Zhang and A. H. MacDonald, arXiv:1107.4727 Phys.

Rev. Lett. (2012).
[45] I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802

(2010).
[46] T. Yokoyama, Y. Tanaka, and N. Nagaosa, Phys. Rev. B

81, 121401(R) (2010).
[47] P. Wei, F. Katmis, B. Assaf, D. Heiman, P. Jarillo-

Herrero and J. Moodera, March Meeting (2012).


