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The time-frequency uncertainty principle states that the product of the temporal and frequency
extents of a signal cannot be smaller than 1/(4π). We study human ability to simultaneously
judge the frequency and the timing of a sound. Our subjects often exceeded the uncertainty limit,
sometimes by more than tenfold, mostly through remarkable timing acuity. Our results establish a
lower bound for the nonlinearity and complexity of the algorithms employed by our brains in parsing
transient sounds, rule out simple “linear filter” models of early auditory processing, and highlight
timing acuity as a central feature in auditory object processing.

PACS numbers: 43.60.+d,43.66.+y,87.19.L-

Fourier transformation turns signals “inside out”, in
the sense that low frequencies dictate what happens at
long times, while high frequencies create fine temporal
detail. This property is demonstrated by Fourier’s un-
certainty theorem, which states that considering the ab-
solute value squared of a signal x(t) as a probability dis-
tribution in time,

P (t) =
|x(t)|2∫∞

−∞ |x(t′)|2dt′
(1)

and the absolute value squared of its Fourier transform
x̃(f) as a distribution in frequency,

P (f) =
|x̃(f)|2∫∞

−∞ |x̃(f ′)|2df ′
(2)

then the product of the standard deviations

∆t =
√
var(t) and ∆f =

√
var(f) (3)

is bounded from below [1]:

∆t∆f ≥ 1

4π
(4)

whence it is inferred that short signals require many fre-
quencies for their representation.

The theorem refers to the original signal and its Fourier
transform. In time-frequency analysis one attempts to
describe a signal in the two-dimensional time-frequency
plane, akin to a musical score where time is the horizontal
axis and frequency the vertical axis. Here the uncertainty
principle begets the Gabor limit [1, 2]. This remapping
emphasizes the uncertainties as a property of the trans-
form itself, rather than the the signal. In time-frequency
analysis, it has been proven that linear operators can-
not exceed the uncertainty bound [2]. Nonlinearity does
not by itself confer any acuity advantage, and in fact
most nonlinearities are merely distortions and thus dele-
terious. However, by the above theorem, any carefully-
crafted analysis that can beat this limit must necessarily
be nonlinear. For instance, precise frequency informa-
tion can be obtained about a sine wave by measuring

the time between two adjacent zeros of the waveform,
a clearly nonlinear operation. The nonlinear distribu-
tions can be classified in families according to their de-
gree of nonlinearity or history-dependence, such as the
quadratic (Cohen’s class) distributions like Wigner-Ville
[3] and Choi-Williams [4], and higher-order ones, such
as multi-tapered spectral derivatives [5, 6], the Hilbert-
Huang distribution [7], and the reassigned spectrograms
[8–12]. To understand how they differ we need to make
an important distinction between resolution and preci-
sion. Resolution refers to our ability to distinguis two
objects, while precision refers to our ability to track the
parameters of a single object, given prior knowledge it is
only one component. This distinction is well-established
in optics, where it is known the wavelength of light limits
resolution: two glass beads cannot be resolved as different
in a microscope if they are closer together than a wave-
length. Precision is not limited, since a single bead can be
tracked with nanometer accuracy. All the above distribu-
tions achieve higher precision than the Gabor limit when
applied to isolated signal components, yet give interfer-
ing results when two signals are closer together than an
uncertainty envelope. Our experimental test is designed
to directly measure precision, not resolution.

A key goal in neuroscience is to establish which algo-
rithms the brain uses to process perceptual information.
Psychophysics, by establishing tight bounds on the per-
formance of our senses,may rule out entire families of
perceptual algorithms as candidates when they cannot
achieve the expected performance [13, 14].

We shall show below that human subjects can discrim-
inate better, and occasionally much better, than the un-
certainty bounds. This categorically rules out any first
order operators, such as the standard sonogram, from
consideration, and puts a stringent bound on the perfor-
mance of any candidate algorithm, demonstrating that
the nonlinearities in the cochlea constitute are integral
to the precision of auditory processing.

Our results are relevant both in the scientific and tech-
nical areas (e.g. [15]), as many high-level models of au-
ditory processing assume an underlying representation of
the earliest steps in auditory information homologous to
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FIG. 1: Stimulus and task. In our final task 5, subjects are
asked to discriminate simultaneously whether the test note
(red) is higher or lower in frequency than the leading note
(green), and whether the test note appears before or after
the flanking high note (blue). For each instance of the task,
two numbers are generated (Dt and Df) and two Boolean
responses (left/right, up/down) are recorded. Tasks 1 through
4 lead to this final task: task 1 is frequency only (uses two
flanking notes), task 2 timing only, task 3 is frequency only
but with the flanking high note (blue) as a distractor, and task
4 is timing only, with the leading (green) note as a distractor.
[21].

a bank of linear filters [16, 17]. Others use one implicitly,
by estimating receptive fields from the reverse correlation
method (revcor) or by projecting auditory signals onto a
basis of more “natural” filters than the Fourier basis.
In many applications such as speech recognition or au-
dio compression (e.g. MP3 [18]), the first computational
stage consists of generating from the source sound sono-
gram snippets, which become the input to latter stages.
Our data suggest this is not a faithful description of early
steps in auditory transduction and processing, which ap-
pear to preserve much more accurate information about
the timing and phase of sound components [12, 19, 20]
than about their intensity.

We shall carefully distinguish between the physical at-
tributes of the stimulus and the analogous psychological
quantities. Most relevant will be the distinction between
∆t and ∆f , the physical uncertainties defined by eqns (1,
2), versus δt and δf , the psychological limens of discrim-
ination. It would be trivial to violate the theorem by
using an incorrect definition of δt and δf or an incorrect
evaluation of the bound. The limens are defined to carry

FIG. 2: (A) Measurement strategy. As task 5 proceeds, the
numbers Df and Dt are drawn as Gaussian random numbers
with variances pref and multf . The smaller these variance,
the harder the task. The variances are independently con-
trolled by a 2D1U (two down, one up) procedure: when two
responses in a row are correct, the variance is reduced and the
task is made harder; the variance is increased for every wrong
response. This procedure converges to a demanding regime,
where the subject makes frequent mistakes, but fewer than
50%. Data shown from subject qr3zb [21]. (B) Datum defi-
nition. We show in red the time responses of subject qr3zb;
horizontal axis is Dt, vertical axis is 0 (for before) or 1 (for
after); we have slightly offset the data by random amounts
from 0 or 1 to better visualize the density of points at any
given Dt. In blue, the psychometric curve which maximizes
the likelihood of the data. The procedure described in 1(b)
has converged to a high density of tests around 0, spanning
the steepest area of the psychometric curve

the meaning of a standard deviation, so that the actual
number is directly comparable to the equivalent physical
attribute. It is standard in the literature to define limens
through a same-different paradigm. For reasons detailed
below, but particularly because same-different is unlike
the standard deviation definition of the physical ∆t and
∆f , we shall operatively define δt and δf through a two-
alternative forced choice above or below paradigm (illus-
trated by the right panel of Figure 2), and then regress
by maximum likelihood the performance data against a
psychometric curve in the form of an error function; the
standard deviation parameter of this error function is our
limen.

We test for both limens simultaneously, as shown in
Figure 1. Figure 2 demonstrates how we increase diffi-
culty and extract limens of perception. Prior work in the
area (e.g.[22–24]) has always compared measurements of
frequency discrimination limens δf against the physical
temporal duration of the sound packets, ∆t. This is in-
adequate for our purposes on two grounds: first it treats
the quantities in the inequality differently, contradicting
the “spirit” of the uncertainty principle, and second be-
cause it fails to verify human ability in an important and
ecologically relevant domain, timing acuity.

We use two test stimuli [21]. The first is a Gaussian
packet, for which 4π∆t∆f = 1, attaining the bound in
the theorem; our study shows that many subjects display
limens such that 4πδtδf � 1. In most of the subjects,
the overall increase in performance comes from substan-
tial increases in timing accuracy. One of our subjects,
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FIG. 3: Figure 2. Summary of main results: discrimination
limens for each test. Each round dot is a completion of Task 5
by a subject on an individual day, with at least 100 presenta-
tions. There were 12 subjects totaling 26 individual sessions
for Gaussian and 12 sessions for notelike tests. Blue denotes
Gaussian packet while red denotes notelike. The two solid
lines are the locus of the relation δtδf = ∆t∆f ; any dots
below these curves violate the corresponding uncertainty re-
lation. Error bars in both dimensions were obtained by gen-
erating 1000 bootstraps from the raw data and plotting the
25%− 75% quartiles. Raw data provided in Suppl. Table S1.

ar4tl, when tested with notes of ∆t = 35ms attained
a limen of δt = 3ms, while frequency performance de-
graded, δf > ∆f . In our second test we use a wave
packet with a note-like envelope characterized by a rapid
rise and a slow exponential decay. Such envelopes are
sub-optimal according to the uncertainty principle, hav-
ing a product 4π∆t∆f greater than unity; in our case,
4π∆t∆f = 5.7079. However the performance of our sub-
jects on such packets is just as good, if not better, than
on the Gaussian packet; yielding broad implications for
understanding early auditory processing.

The results from task 5 are summarized in Figure 3 and
available in [21]. Each dot corresponds to a simultane-
ous limen measurement as outlined above. Some subjects
performed several different measurements, never on the
same week. Two extremes are worth discussing in detail.
The lowest blue dot at the bottom center of the plot dis-
plays the greatest violation of the principle in our records,
by a factor of about 13. The subject qr3zb displayed in
equal measure a marked increase in frequency acuity as
well as temporal acuity, and hence the measurement is
below and to the left of the physical values of ∆t, ∆f
for the Gaussian note (indicated by the black lines). The
subject is a professional musician. The second point to
consider is the leftmost point, at the center left of the di-
agram, from subject ar4tl. This is the smallest δt limen

in our records; at 3 ms, the subject was able to discrimi-
nate the relative timing of two notes a factor of 13 better
than their widths; it should be noted that 3ms is barely
more than a single period of the test note, 2.27ms. How-
ever this subject was unable to estimate frequency better
than its physical extent, which is indicated by the dot be-
ing above the black line indicating the Gaussians ∆f , so
overall this measurement beats the uncertainty principle
only by a factor of 10. The subject is an electronic mu-
sician who microcomposes and works in precision sound
editing.

We can now examine some implications of these data.
First, even though the notelike packet’s uncertainty prod-
uct is substantially above the minimum, subjects seem to
be able to discriminate with it just as well as with the
Gaussian packet, leading to two measurements (red dot
at the bottom of the graph and red dot on the black hor-
izontal line) that beat relative uncertainty by a factor of
50: δtδf ≈ (1/50)∆t∆f , and absolute uncertainty by a
factor of 10: 4πδtδf ≈ (1/10). Therefore we may con-
clude that a larger uncertainty product of the test note
does not necessarily affect the subjects’ acuity. Second,
for the Gaussian (blue) data, the plot shows a number of
different strategies that subjects use to discriminate, with
a remarkable spread: from those who do not achieve the
physical limits in either dimension (1), those who have
better frequency but worse timing (4), those with bet-
ter timing and worse frequency (10), and those who have
both better timing as well as better frequency discrimi-
nation than the physical values (8). While the number of
measurements in each category undoubtedly reveals the
underlying bias of our subject population, the fact that
there are many strategies should be robust. However,
there is a noticeable shift of the cloud to the left of the
reference notes, so that we can see on median the sub-
jects perform twice as well in timing discrimination as
the physical value: 80% of the Gaussian data and 100%
of the notelike data lie on the δt < ∆t halfplane.

It is important to stress where the difficulty of the task
lies. Our preliminary testing included non-musicians,
who where often close in performance to musicians on
tasks 1 and 2 (separate time and frequency acuity), but
then found tasks 3 and 4 hard, while musicians, trained
to play in ensembles, found them easy.

We further found that composers and conductors
achieved the best results in task 5, consistently beating
the uncertainty principle by factors of 2 or more, whereas
performers were more likely to beat it only by a few per-
centage points. After debriefing subjects, it appears that
the necessity of hearing multi-voiced music (both in fre-
quency and in time) in one’s head and coaching others to
perform it led to the improved performance of conductors
and composers.

Early last century a number of auditory phenomena,
such as residue pitch and missing fundamentals, started
to indicate that the traditional view of the hearing pro-
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cess as a form of spectral analysis had to be revised. In
1951, Licklider [25] set the foundation for the temporal
theories of pitch perception, in which the detailed pat-
tern of action potentials in the auditory nerve is used
[26, 28], as opposed to spectral or place theories, in
which the overall amplitude of the activity pattern is
evaluated without detailed access to phase information.
The groundbreaking work of Ronken [22] and Moore [23]
found violations of uncertainty-like products and argued
for them to be evidence in favor of temporal models.
However this line of work was hampered fourfold, by lack
of the formal foundation in time-frequency distributions
we have today, by concentrating on frequency discrim-
ination alone, by technical difficulties in the generation
of the stimuli, and not the least by lack of understand-
ing of cochlear dynamics, since the active cochlear pro-
cesses had not yet been discovered. Perhaps because of
these reasons this groundbreaking work did not percolate
into the community at large, and as a result most sound
analysis and processing tools today continue to use mod-
els based on spectral theories. We believe it is time to
revisit this issue.

We have conducted the first direct psychoacoustical
test of the Fourier uncertainty principle in human hear-
ing, by measuring simultaneous temporal and frequency
discrimination. Our data indicate that human subjects
often beat the bound prescribed by the uncertainty the-
orem, by factors in excess of 10. This is sometimes ac-
complished by an increase in frequency acuity, but by and
large it is temporal acuity that is increased and largely
responsible for these gains. Our data further indicate
subject acuity is just as good for a note-like amplitude
envelope as for the Gaussian, even though theoretically
the uncertainty product is increased for such waveforms.
Our study directly rules out many of the simpler models
of early auditory processing, often used as input to the
higher-order stages in models of higher auditory function.
Of the plethora of time-frequency distributions and au-
ditory processing models that have been studied, only a
few stand a chance of both matching the performance of
human subjects and be plausibly implementable in the
neural hardware of the auditory system(e.g.[6, 7, 12, 28],
with the reassignment method having the best compara-
tive temporal acuity. Elucidation of which mechanism
underlies our subjects auditory hyper acuity is likely
to have wide-ranging applications, both in fields where
matching human performance is an issue, such as speech
recognition, as well as those more removed, such as radar,
sonar and radio astronomy.
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