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2 Instituto de F́ısica Teórica UAM/CSIC and Universidad Autónoma de Madrid,

E-28049 Madrid, Spain
3 Physics Department, CERN, CH-1211 Genéve 23, Switzerland
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Abstract

We show that it is possible to describe the effective Pomeron in-
tercept, determined from the HERA Deep Inelastic Scattering data at
small values of Bjorken x, using next-to-leading order BFKL evolution
together with collinear improvements. To obtain a good description
over the whole range of Q2 we use a non-Abelian physical renormaliza-
tion scheme with BLM optimal scale, combined with a parametrization
of the running coupling in the infrared region.

1 Introduction & theoretical approach

The description of Deep Inelastic Scattering (DIS) data for structure functions
in different regions of Bjorken x and virtuality of the photon Q2 is a classical
problem in QCD. The literature on the subject is large (see, e.g., Ref. [1]). In
this Letter we are interested in small x regions and revisit the approach to the
problem using the next-to-leading order (NLO) [2] BFKL [3] equation together
with collinear improvements. We find that, in order to get a good description
over the full range of Q2, we can use optimal renormalization schemes. Here
we highlight the most important aspects which drive our results.

In DIS the cross section is written in terms of the structure functions F2
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and FL in the form

d2σ

dx dQ2
=

2πα2

xQ4

{
[1 + (1− y)2]F2(x,Q2)− y2FL(x,Q2)

}
, (1)

where x and y are the Bjorken variables, Q2 the photon’s virtuality and α the
electromagnetic constant. In terms of transverse and longitudinal polarizations
of the photon, we have

F2(x,Q2) =
Q2

4π2α
[σT (x,Q2) + σL(x,Q2)], FL(x,Q2) =

Q2

4π2α
σL(x,Q2), (2)

where σT,L is the cross-section for the scattering of a transverse (longitudinal)
polarized virtual photon on the proton. At large center-of-mass energy

√
s,

which corresponds to the small x ' Q2/s limit, high energy factorization
makes it possible to write FI , I = 2, L in the form

FI(x,Q
2) =

1

(2π)4

∫
d2q⊥
q2

∫
d2p⊥
p2

ΦI

(
q,Q2

)
ΦP

(
p,Q2

0

)
F (s, q, p) , (3)

with two-dimensional integrations where q =
√
q2
⊥. The proton (ΦP ) and

photon (ΦI) impact factors are dominated by O(Q0) and O(Q) transverse
scales, respectively. ΦI can be calculated in perturbation theory. This is not
the case for ΦP whose dependence on the non-perturbative scale Q0 ' ΛQCD

can only be modeled.
If Q2 ' Q2

0 then the gluon Green’s function F , the solution of the BFKL
equation, would be

F(s, q, p) =
1

2πq p

∫
dω

2πi

∫
dγ

2πi

(
q2

p2

)γ− 1
2
(
s

q p

)ω
1

ω − ᾱsχ0 (γ)
, (4)

with ᾱs = αsNc/π and χ0(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) in a leading order
(LO) approximation, which resums ᾱns logn s terms. ψ(γ) is the logarithmic
derivative of the Euler Gamma function. In DIS, however, Q2 � Q2

0 and this
expression should be written in a form consistent with the resummation of
ᾱs log (1/x) contributions:

F(s, q, p) =
1

2πq2

∫
dω

2πi

∫
dγ

2πi

(
q2

p2

)γ (
s

q2

)ω
1

ω − ᾱsχ0

(
γ − ω

2

) . (5)

The zeros of the denominator in the integrand generate in the limits γ → 0, 1
all-orders terms not compatible with DGLAP [4, 5]. The first of these pieces
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(O(α2
s)) is removed when the NLO correction to the BFKL kernel is taken

into account but not the higher order ones, which remain and are numerically
important. A scheme to eliminate these spurious contributions [4], in a nut-
shell, consists of using a modified BFKL kernel in Eq. (4) where we essentially
introduce the change χ0(γ)→ χ0(γ + ω/2).

Let us present now in a precise manner our procedure to include the NLO
corrections and collinear improvements. The NLO expansion of the BFKL
kernel in terms of poles at γ = 0, 1 reads

ω = ᾱsχ0(γ − ω

2
) + ᾱ2

sχ1(γ)

= ᾱsχ0(γ) + ᾱ2
sχ1(γ)− 1

2
ᾱ2
sχ0
′(γ)χ0(γ) +O(ᾱ3

s)

' ᾱs
γ

+ ᾱ2
s

(
a

γ
+

b

γ2
− 1

2γ3

)
+

ᾱs
1− γ

+
ᾱ2
s

2γ3
− ᾱ2

s

2(1− γ)3

+ ᾱ2
s

[
a

1− γ
+

b

(1− γ)2
− 1

2(1− γ)3

]
+O(ᾱ3

s), (6)

where χ0
′(γ) = ψ′(1−γ)−ψ′(γ). Now, as we have explained before, we resum

in the Regge region (Q2 ' Q2
0) collinear logarithms by introducing a shift of

the general form [4,5]

ω = ᾱs(1 + Aᾱs)
[
2ψ(1)− ψ

(
γ +

ω

2
+Bᾱs

)
− ψ

(
1− γ +

ω

2
+Bᾱs

)]
. (7)

In the DIS limit (Q2 � Q2
0) this is replaced by

ω = ᾱs(1 + Aᾱs) [2ψ(1)− ψ (γ +Bᾱs)− ψ (1− γ + ω +Bᾱs)]

= ᾱs(1 + Aᾱs)
∞∑
m=0

(
1

γ +m+Bᾱs
+

1

1− γ +m+ ω +Bᾱs
− 2

m+ 1

)
. (8)

It is possible to get a very good approximation to the solution of this equation
(certainly within the uncertainty of the resummation scheme) by breaking its
transcendentality and solving it pole by pole and summing up the different
solutions. This procedure was proposed in Ref. [5]. In terms of (anti-)collinear
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poles we obtain

ω =
∞∑
m=0

{
ᾱs(1 + Aᾱs)

(
1

γ +m+Bᾱs
− 2

m+ 1

)

+
1

2

(
γ − 1−m−Bᾱs +

√
(γ − 1−m−Bᾱs)2 + 4ᾱs(1 + Aᾱs)

)}

=
∞∑
m=0

{
ᾱs

(
1

γ +m
+

1

1− γ +m
− 2

m+ 1

)

+ ᾱ2
s

(
A

γ +m
+

A

1− γ +m
− B

(γ +m)2
− B

(1− γ +m)2

− 1

(1 +m− γ)3
− 2A

m+ 1

)}
+O(ᾱ3

s). (9)

In order to match the NLO poles in Eq. (6) we need to fix A = a and B = −b.
Keeping the LO and NLO kernels unmodified and introducing only higher
orders corrections, our collinearly improved BFKL kernel then simply reads

χ(γ) = ᾱsχ0(γ) + ᾱ2
sχ1(γ)− 1

2
ᾱ2
sχ0
′(γ)χ0(γ) + χRG(ᾱs, γ, a, b), (10)

with

χRG(ᾱs, γ, a, b) = ᾱs(1 + aᾱs) (ψ(γ)− ψ(γ − bᾱs))

− ᾱ
2
s

2
ψ′′(1− γ)− bᾱ2

s

π2

sin2 (πγ)
+

1

2

∞∑
m=0

(
γ − 1−m+ bᾱs

−2ᾱs(1 + aᾱs)

1− γ +m
+
√

(γ − 1−m+ bᾱs)2 + 4ᾱs(1 + aᾱs)

)
. (11)

For the NLO kernel,

χ1(γ) = Sχ0(γ)− β0

8Nc

χ2
0(γ) +

Ψ′′(γ) + Ψ′′(1− γ)− φ(γ)− φ(1− γ)

4

− π2 cos (πγ)

4 sin2 (πγ)(1− 2γ)

[
3 +

(
1 +

nf
N3
c

)
2 + 3γ(1− γ)

(3− 2γ)(1 + 2γ)

]
+

3

2
ζ(3), (12)

with S = (4− π2 + 5β0/Nc)/12, β0 =
(

11
3
Nc − 2

3
nf
)

and

φ(γ) + φ(1− γ) =
∞∑
m=0

(
1

γ +m
+

1

1− γ +m

)[
Ψ′
(

1 +
m

2

)
−Ψ′

(
1 +m

2

)]
, (13)
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we obtain for the coefficients

a =
5

12

β0

Nc

− 13

36

nf
N3
c

− 55

36
, b = − 1

8

β0

Nc

− nf
6N3

c

− 11

12
. (14)

Our model for the non-perturbative proton impact factor reads

ΦP

(
p,Q2

0

)
= C

(
p2

Q2
0

)δ
e
− p2

Q2
0 , (15)

which introduces three independent free parameters and has a maximum at
p2 = δ Q2

0. Its representation in γ space reads∫
d2p

p2
ΦP

(
p,Q2

0

)
(p2)−γ = π C Γ(δ − γ)(Q2

0)−γ. (16)

We choose to keep the impact factors as simple as possible in order to focus
on the gluon Green’s function. Having this philosophy in mind, we work with
the LO photon impact factor which reads (directly in ν = i(1/2− γ) space)∫

d2q

q2
ΦI

(
q,Q2

)( q2

Q2

)γ−1

= α ᾱs π
4

nf∑
q=1

e2
q

ΩI(ν)

ν + ν3
sech(πν) tanh (πν) , (17)

where Ω2 = (11 + 12ν2)/8 and ΩL = ν2 + 1/4.
So far we have not included those terms breaking scale invariance, directly

linked to the running of the coupling. They appear as a differential operator
in ν space which acts on the impact factors (for a similar analysis see Ref. [6]).
Let us first only exponentiate the scale invariant LO and NLO terms in the
kernel, i.e.

FI(x,Q
2) = D

∫ ∞
−∞

dν x−χ(
1
2

+iν)cI(ν)cP (ν)

{
1

+ᾱ2
s log

(
1

x

)
β0

8Nc

χ0

(
1

2
+ iν

)[
log (µ4) + i

d

dν
log

(
cI(ν)

cP (ν)

)]}
, (18)

where we have gathered different constants in D and µ denotes the renormal-
ization scale. Since

cI(ν) = (Q2)
1
2

+iν ΩI(ν)

ν + ν3
sech(πν) tanh (πν), (19)

cP (ν) = Γ

(
δ − 1

2
− iν

)
(Q2

0)−
1
2
−iν , (20)
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we can write

FI(x,Q
2) = D

∫ ∞
−∞

dν x−χ(
1
2

+iν)cI(ν)cP (ν)

{
1

+ᾱ2
s log

(
1

x

)
β0

8Nc

χ0

(
1

2
+ iν

)[
− log

(
Q2Q2

0

µ4

)
− ψ

(
δ − 1

2
− iν

)

+i

(
πcoth(πν)− 2π tanh (πν)−MI(ν)

)]}
, (21)

where

M2(ν) =
11 + 21ν2 + 12ν4

ν(1 + ν2)(11 + 12ν2)
, ML(ν) =

1− ν2 + 4ν4

ν(1 + 5ν2 + 4ν4)
. (22)

In this Letter we take a conservative approach and among all the possible
ways to treat the running of the coupling we consider the simplest: to only
exponentiate the logarithmic term in Eq. (21) carrying the dependence on the
external scales (this is explained in Sec. 2). The scale dependence appears as a
consequence of the symmetric action of the differential operator ∂/∂γ present
in the BFKL kernel on both impact factors.

Although we have included all the ingredients needed to calculate FL, we
leave a comparison to experimental data for this observable to future work
and focus in the following on F2.

2 Running coupling & optimal renormalization

Although there is some freedom in the treatment of the running of the coupling,
it is natural to remove the µ dependent logarithm in the second line of Eq. (21)
making the replacement

ᾱs − ᾱ2
s

β0

8Nc

log

(
Q2Q2

0

µ4

)
−→ ᾱs (QQ0) , (23)

and use this resummed coupling throughout our calculations. We are inter-
ested in the comparison of our approach with DIS data in the small x region.
We focus on the description of the Q2 dependence of the well-known effective
intercept λ(Q2), which can be obtained from experimental DIS data in the
region x < 10−2 through a parametrization of the structure function of the
form F2(x,Q2) = c(Q2)x−λ(Q2). The intercept λ(Q2) is O(0.3) at large values
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of Q2 and O(0.1) at low values, closer to the confinement region. This can
be qualitatively interpreted as a smooth transition from hard to soft Pomeron
exchange. When trying to describe these data with our approach we have
found that it is rather difficult to get good agreement over the full range of
1 GeV2 < Q2 < 300 GeV2. Somehow it is needed to introduce some new ideas
related to the infrared region. A recent very interesting possibility is that pro-
posed by Kowalski, Lipatov, Ross and Watt in Ref. [7]. Alternatively, we have
found that moving from the MS scheme to renormalization schemes inspired
by the existence of a possible infrared fixed point significantly helps in gen-
erating a natural fit for λ(Q2), in the sense of having sensible values for the
two free parameters in our calculation which affect this observable: δ and Q0

in the proton impact factor. Here we are guided by having a proton impact
factor which should be dominated by the infrared region.

The first evaluation of the BFKL Pomeron intercept in non-Abelian physi-
cal renormalization schemes using the Brodsky-Lepage-Mackenzie (BLM) opti-
mal scale setting [8] was performed in Ref. [9] in the context of virtual photon-
photon scattering. We will use the same procedure in our calculation. The
pieces of the BFKL kernel at NLO proportional to β0 are isolated and ab-
sorbed in a new definition of the running coupling in such a way that all
vacuum polarization effects from the β0 function are resummed, i.e.,

α̃s (QQ0, γ) =
4Nc

β0

[
log
(
QQ0

Λ2

)
+ 1

2
χ0(γ)− 5

3
+ 2

(
1 + 2

3
Y
)] , (24)

where we are using the momentum space (MOM) physical renormalization
scheme based on a symmetric triple gluon vertex [10] with Y ' 2.343907 and
gauge parameter ξ = 3 (our results are very weakly dependent on this choice).
This scheme is more suited to the BFKL context since there are large non-
Abelian contributions to the kernel. Let us clarify that the BLM procedure is
scheme-independent and the dependence of our results on different schemes is
very small. The main reason to introduce the BLM procedure in our context
is to eliminate the divergent renormalon series of the form αnsβ

n
0n!, which has

a big effect in the small Q2 region (see Ref. [11] for a modern review on the
subject). The replacements we need in our kernel in order to introduce this new
scheme are ᾱs (QQ0) → α̃s (QQ0) in Eq.(23) and χ1(γ) → χ̃1(γ) in Eq. (12)
together with the corresponding adjustments for the coefficients a, b → ã, b̃
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which enter Eq. (11). They read

χ̃1(γ) = S̃χ0(γ) +
3

2
ζ(3) +

Ψ′′(γ) + Ψ′′(1− γ)− φ(γ)− φ(1− γ)

4

− π2 cos (πγ)

4 sin2 (πγ)(1− 2γ)

[
3 +

(
1 +

nf
N3
c

)
2 + 3γ(1− γ)

(3− 2γ)(1 + 2γ)

]
+

1

8

[
3

2
(Y − 1)ξ +

(
1− Y

3

)
ξ2 +

17Y

2
− ξ3

6

]
χ0(γ), (25)

ã = −13

36

nf
N3
c

− 55

36
+

3Y − 3

16
ξ +

3− Y
24

ξ2 − 1

48
ξ3 +

17

16
Y (26)

b̃ = − nf
6N3

c

− 11

12
, (27)

where S̃ = (4− π2)/12.
In order to access regions with Q2 ' 1 GeV2, we use a simple parametriza-

tion of the running coupling introduced by Webber in Ref. [12]:

αs
(
µ2
)

=
4π

β0 ln µ2

Λ2

+ f

(
µ2

Λ2

)
, f

(
µ2

Λ2

)
=

4π

β0

125
(

1 + 4 µ
2

Λ2

)
(

1− µ2

Λ2

)(
4 + µ2

Λ2

)4 . (28)

At low scales it is consistent with global data of power corrections to pertur-
bative observables. It is shown in Fig. 1.
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Figure 1: Left: model for the running coupling with freezing in the infrared (solid

line) and leading order running coupling with Landau pole (dashed line) for nf = 3

and Λ = 0.25 GeV. Right: proton impact factor in momentum space with C =

1/Γ(1 + δ) and δ,Q0 with the values used for the comparison to DIS data.

The final expression used in the numerical analysis is then given by

α̂s (QQ0, γ) = α̃s (QQ0, γ) +
Nc

π
f

(
QQ0

Λ2

)
, (29)
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which replaces Eq. (24) in all expressions. In a future publication we will
compare the scheme here presented to other physical renormalization schemes.
For simplicity we have not introduced a complete treatment of quark thresholds
in the results of this Letter, but we have checked that they have a very small
effect.

3 Comparison to DIS data & scope

To obtain our theoretical results we have calculated the logarithmic derivative
d logF2

d log(1/x)
using Eq. (21) with the modifications described in Section 2. For the

comparison with DIS data we chose the values Q0 = 0.28 GeV and δ = 8.4
while the dependence on the overall normalization factor C cancels for our
observable. The QCD running coupling constant is evaluated for nf = 4 and

Λ = 0.21 GeV, corresponding to a MS coupling of αMS
s (M2

Z) = 0.12. The result
is shown in Fig. 2. The experimental input has been derived from the combined
analysis performed by H1 and ZEUS in Ref. [13] with x < 10−2. In the results
indicated with “Real cuts” we have calculated the effective intercept for F2 at a
fixed Q2, averaging its values in a sample of x space consistent with the actual
experimental cuts in x. To generate the continuous line with label “Smooth
cuts” we have used as boundaries in x space those shown in Fig. 3, which
correspond to an interpolation of the real experimental boundaries. Note that
the difference between both approaches is very small.

We would like to stress the accurate description of the combined HERA
data in our approach, in particular at very low values of Q2. It is noteworthy
that the values of Q0 and δ indicate that our proton impact factor (see the
plot at the right in Fig. 1) safely lies within the non-perturbative region since
it has its maximum at ∼ 0.81 GeV. In the present Letter our intention is to
emphasize that, in order to reach the low Q2 region with a collinearly improved
BFKL equation we needed to call for optimal renormalization and use some
model with a frozen coupling in the infrared.

It is possible to improve the quality of our fit by introducing subleading
contributions such as threshold effects in the running of the coupling, heavy
quark masses and higher order corrections to the photon impact factor which
became recently available [14]. We leave these, together with a comparison to
data not averaged over x, for a more extensive study, which will include an
investigation of FL, to be presented elsewhere.
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Figure 2: Comparison of our prediction with experimental data.
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