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We present a new method for determining pulse imperfections and improving the single-gate
fidelity in a superconducting qubit. By applying consecutive positive and negative π pulses, we
amplify the qubit evolution due to microwave pulse distortions, which causes the qubit state to
rotate around an axis perpendicular to the intended rotation axis. Measuring these rotations as
a function of pulse period allows us to reconstruct the shape of the microwave pulse arriving at
the sample. Using the extracted response to predistort the input signal, we are able to reduce the
average error per gate by 37%, which enables us to reach an average single-qubit gate fidelity higher
than 0.998.

A basic requirement for building a quantum informa-
tion processor is the ability to perform fast and precise
single- and two-qubit gate operations [1]. For qubits de-
fined in superconducting circuits, much work has been
done to improve the quality of both single-qubit [2–4]
and two-qubit gate operations [5–11]. Still, gate fideli-
ties need to improve further to reach error rates small
enough for practically implementing fault-tolerant quan-
tum computing with error-correcting protocols [12, 13].
In most qubit architectures, many single-qubit operations
are implemented by applying short microwave pulses res-
onant with the qubit transition frequency. The phase of
the microwave pulse controls the rotation axis in the x-y
plane of the Bloch sphere, whereas the pulse amplitude
and duration set the rotation angle. A difficulty with
this approach is that the single-qubit gate fidelity be-
comes highly susceptible to any impedance mismatch in
the microwave line between the signal generator and the
qubit, since such imperfections lead to pulse distortions.

Consider the microwave pulse shown in Fig. 1(a), which
initially has a Gaussian-shaped envelope AI(t) with a
well-defined phase. When passing from the generator
to the device, the pulse gets distorted, which deforms
the envelope in AI(t) and adds a quadrature component
AQ(t). The pulse was intended to perform a rotation
around the x -axis of the Bloch sphere [see Fig. 1(b)], but
the quadrature components present in the distorted pulse
shape will change the rotation axis and generate an er-
ror in the final qubit state. The systematic errors due to
the non-zero AQ(t) are particularly problematic for qubit
control, since they will bring the qubit state out of the y-
z plane expected from a pure rotation around the x -axis.
In the following, we will focus exclusively on determining
and eliminating these unwanted quadrature components.
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FIG. 1. (a) Distortion of a Gaussian-shaped microwave pulse.
(b) Bloch sphere describing the qubit dynamics in the rotating
frame.

In general, pulse distortions are described by the trans-
fer functionH, which is the frequency-domain representa-
tion of the system’s impulse response h(t). If the transfer
function is known, it is possible to correct pulse imper-
fections using digital signal processing techniques. By
numerically applying the inverse H−1 to the input sig-
nal x, the pulse is predistorted in precisely the right way
to give the correct signal H

[
H−1 [x]

]
= x at the device.

The difficulty lies in obtaining H. Since superconducting
qubits operate at millikelvin temperatures inside a dilu-
tion refrigerator, it is generally not possible to probe the
signal arriving at the qubit directly with conventional
instruments such as a network analyzer or a sampling
oscilloscope.

In this work, we take a different approach and use the
qubit’s response to various pulses as a probe for determin-
ing H [14]. We have designed and implemented a pulse
sequence consisting of pairs of positive and negative π
pulses around the x -axis; the reversing of the pulse di-
rection amplifies the quadrature component of the signal
and causes the qubit to slowly oscillate around the y-axis.
By measuring the rotation frequency for different pulse
periods, we are able to extract the time dependence of
those quadrature components. From the obtained signal
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we construct the inverse transfer function H−1, and use
it to numerically predistort the input signal. The result-
ing pulse shapes give a significant reduction in the gate
error rate, as determined in a randomized benchmarking
experiment [15]. With optimized pulse shapes, we ex-
tract an average gate fidelity higher than 99.8%, which,
to our knowledge, is the highest gate fidelity reported so
far for a superconducting qubit.

We use a flux qubit [16], consisting of a superconduct-
ing loop interrupted by four Josephson junctions. Bi-
ased at the optimal operation point, the qubit’s energy
relaxation time is T1 = 12µs, and the dephasing time
is T ∗2 = 2.5µs (see Ref. [17] for a detailed device descrip-
tion). The device is embedded in a SQUID, which is used
as a sensitive magnetometer for qubit read-out [18]. We
implement the read-out by applying a short current pulse
to the SQUID to determine its switching probability Psw.
When statically biasing the qubit loop at half a flux quan-
tum Φ0/2 (Φ0 = h/2e), the Hamiltonian becomes H =
− h̄

2 (ωqb σ̂z +A(t) σ̂x), where ωqb/2π = 5.4 GHz is the
qubit frequency and A(t) = AI(t) cos(ωt) +AQ(t) sin(ωt)
is the drive field. The drive is generated by applying an
oscillatory flux Φ(t) to the qubit loop using an on-chip
antenna, giving A(t) = 2IPΦ(t)/h̄, with IP = 180 nA be-
ing the loop’s persistent current. When driving the qubit
resonantly (ω = ωqb) and going to the rotating frame, we
get

H = − h̄
2

(
AI(t) σ̂

rot.
x +AQ(t) σ̂rot.

y

)
, (1)

which is the Hamiltonian depicted in the Bloch sphere in
Fig. 1(b).

The microwave pulses are created by generating in-
phase [AI(t)] and quadrature [AQ(t)] pulse envelopes
using a Tektronix 5014 arbitrary waveform generator
(AWG), and sending them to the internal IQ mixer
of an Agilent 8267D microwave generator. We write
the total transfer function from generator to qubit as
H = HextHint, where Hext refers to imperfections in the
electronics and coaxial cables outside the cryostat, and
Hint describe signal distortion occurring inside the cryo-
stat, for example from bonding wires or impedance mis-
matches on the chip. To ensure that the pulses we send
to the cryostat are initially free from distortion, we deter-
mine Hext with a high-speed oscilloscope, and use H−1

ext

to correct for imperfections in the AWG and in the IQ
mixers [19, 20]. The setup allows us to create well-defined
Gaussian-shaped microwave pulses with pulse widths as
short as tpw = 2.5 ns [21].

To extract information about Hint, we drive the qubit
with consecutive pairs of positive and negative π pulses
in AI(t), separated by the pulse period T . The sequence
is depicted in Fig. 2(a), together with Bloch spheres de-
scribing the qubit states at various points of the pulse
sequence. Note that in Fig. 2(a), we show an example of
the drive pulses that reach the qubit, including a small
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FIG. 2. (a) Pulse sequence used to probe quadrature compo-
nents in the microwave pulses. (b) Bloch spheres depicting
the evolution of the qubit during the pulse sequence in (a).
The angle θ is the quadrature rotation acquired per π pulse.
(c) Switching probability Psw after the pulse sequence in (a),
measured vs pulse period T and total number of pulses N ,
and projected onto the three axis x, y and z.

AQ-distortion after each pulse to better illustrate how
the sequence works. The signal we create at the generator
does not have any quadrature components. Starting with
the qubit in the ground state, we apply a π-pulse around
x to take the qubit to |1〉 [step I in Fig. 2(a-b)]. Next,
the AQ-part, due to the pulse distortion, induces a small
rotation θ around y, bringing the qubit state slightly off
the south pole (II). The negative π pulse then takes the
qubit back towards the north pole (III), but since this
pulse is inverted, the following AQ-part rotates the state
even further away from |0〉 (IV). After the first two pulses,
the qubit has acquired a rotation of 2θ around the y-axis
(V). The sequence is then repeated, and for each pair of
subsequent π pulses the qubit rotates another 2θ.

Figure 2(c) shows the qubit state after the pulse se-
quence, measured versus the number of pulses and the
pulse period T , and projected onto the three axes x, y,
and z using additional π/2 pulses to do state tomography
before reading out the qubit’s polarization [22]. There are
clear oscillations in the x- and z-components, verifying
that the qubit indeed rotates around the y-axis despite
the pulses being applied to x. Note that the rotation fre-
quency is relatively slow: it typically takes a few hundred
π pulses to perform one full rotation around y. A striking
feature of Fig. 2(c) is that the oscillation frequency varies
with pulse period all the way up to T = 25 ns, much
longer than the pulse width tpw = 2.5 ns. This indicates
that the quadrature distortions persist for a substantial
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time after the pulse should have ended.

To explain why the quadrature rotations depend on
pulse period, we need to understand what happens when
the π pulses start to overlap with the distortions of the
previous π pulses. Let us start by assuming that the π
pulses are instantaneous, and consider the qubit response
to the static quadrature distortion shown in Fig. 3(a),
where AQ(t) remains constant at AQ/2π = 0.4 MHz
for 30 ns after the π-pulse in AI(t) at t = 0. Figure
3(b) shows the qubit quadrature rotation during the dis-
tortion, plotted for different values of the pulse period
T . If T is 30 ns or longer [black circles in Fig. 3(b)],
the qubit will continuously rotate in one direction dur-
ing AQ(t), acquiring a total rotation per pulse of θ =∫ t=30 ns

t=0
AQ(t)dt ≈ 4.3 deg. However, if the pulse period

is only T = 15 ns [green squares in Fig. 3(b)], the second
π pulse in AI at t = 15 ns will reverse the direction of
the AQ-induced rotations of the first pulse. The rotation
per pulse θ acquired with pulse period T = 15 ns ends
up being zero, since the rotations during the second half
of AQ(t) exactly cancel out the rotations during the first
half. For T = 10 ns [blue diamonds in Fig. 3(b)], there are
two extra π pulses in AI occurring during the distortions
of the first pulse, and we end up with θ = 1.4 deg. Note
that we only consider the rotation due to the distortion
of the first π pulse; the total qubit rotation will be a sum
of the rotations from all pulses.

Having understood why θ depends on pulse period
T for a given AQ(t), we now ask if we can invert the
problem: given a measurement of θ as a function of T
such as the black trace in Fig. 3(c), can we extract the
pulse distortions AQ(t)? To simplify the problem, we
discretize time in the smallest steps available with our
AWG, ∆t = 1/(1.2 GS/s) ≈ 0.83 ns, and write AQ(t) as

a vector ~Q = [Q1, Q2, · · · , QN ], with Qn = AQ(n∆t).
The rotations θ(T ) in Fig. 3(a) are measured with the
same time resolution, and in a similar fashion we write
θ(T ) as ~θ = [θ1, θ2, · · · , θN ], θm = θ(m∆t). Both vectors
contain N = 30 ns/∆t = 36 elements. We still assume
the π pulses in AI to be instantaneous, occurring with a
period of m = T/∆t in the discretized time.

As explained previously, the π pulses will act to peri-
odically reverse the direction of the ~Q-induced rotations,
and the total rotation angle θm generated by ~Q becomes
a sum of forward and backward rotations, depending on
the period of the π pulses:

θm = ∆t

[
m∑

n=1

Qn −
2m∑

n=m+1

Qn +

3m∑
n=2m+1

Qn − · · ·

]
(2)

We can write Eq. (2) as a system of linear equations ~θ =

∆tM ~Q, where M is a matrix with elements being either
1 or −1 depending on the direction of rotation [23]. By
inverting the matrix, we get the quadrature distortions
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FIG. 3. (a) Constant quadrature distortion AQ(t) used to
illustrate how the rotation angle depends on pulse period.
(b) Qubit quadrature rotation for the quadrature distortion
shown in (a), calculated with the pulse sequence from Fig. 2(a)
and plotted for a few different pulse periods T . (c) Quadra-
ture rotation θ acquired per π pulse. The black points are
extracted from data similar to the measurement shown in
Fig. 2(c). The magenta points are the results using a pre-
distorted pulse shape, aimed at minimizing the quadrature
distortion. (d) Quadrature component AQ appearing at the
sample when applying a 2.5 ns wide Gaussian pulse AI at the
input of the experimental setup.

directly from the measured rotations θ:

~Q = M−1 ~θ/∆t. (3)

In the experiment, the π pulses have a finite width
tpw = 2.5 ns, and the matrix M needs to be modified
slightly to account for the finite pulse duration [24]. In

Fig. 3(d), we show the extracted quadrature response ~Q,
calculated using Eq. (3) and the rotation data θ from
Fig. 3(c). For reference we also plot the shape and
amplitude of the intended drive pulse AI, digitized at
In = AI(n∆t). The pulse has an amplitude of 200 MHz,
giving a π rotation in tpw = 2.5 ns. The extracted

quadrature response ~Q has considerably lower amplitude,
but keeps oscillating for 25 ns after the main pulse ends.

Next, we use the measured response shown in Fig. 3(d)
to determine the transfer function Hint of the system
[25]. With knowledge of H, we can calculate the inverse
H−1 and use it to predistort the input signal, with the
aim of reducing the quadrature distortions. The magenta
trace in Fig. 3(c) shows the quadrature rotations θ for the
same sequence of positive/negative pulses, but this time
measured with a predistorted input signal. Compared to
the black trace, θ has been significantly reduced for all
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FIG. 4. (a) Qubit polarization as a function of the number of
pulses in the RBM sequence, measured with and without pre-
distortion. The pulses have width tpw = 3.5 ns, separated by
the period T = 10.5 ns. We use the same number of sequences
and randomizations as in Refs. [3, 15]. (b) Average error per
pulse versus pulse width tpw, measured with T = 3 tpw.

values of the pulse period T , thus validating our method
for extracting H. We attribute the rotations still present
after predistortion to errors due to oversimplifications in
the linear model in Eq. (3) used to extract ~Q. It may be
possible to get a better estimate for AQ by calculating the
qubit response using the full dynamics of the Hamiltonian
in Eq. (1), but it would involve solving a system of 36 non-
linear equations, which computationally is much harder
than inverting the matrix M in Eq. (3).

Note that there may also be pulse distortions appear-
ing in the in-phase component AI. However, the con-
secutive positive and negative pulses in the sequence of
Fig. 2(a) will cancel the effect of any errors in the rota-
tions around x, which is also confirmed in the exper-
iment (the y-component in Fig. 2(c) shows no oscilla-
tions). This cancellation allows us to exclusively target
the AQ-distortions.

Having determined a way to reduce quadrature distor-
tions and improve the microwave pulse shapes, we pro-
ceed to characterize the qubit gate fidelity in our system.
A convenient way of testing single-qubit gates is to im-
plement the randomized benchmarking protocol (RBM)
[15], where a random sequence of π and π/2 pulses around
the x- and y-axes are applied to the qubit. If the pulses
are imperfect, the qubit will start to dephase as the pulse
errors accumulate. Figure 4(a) shows examples of decay
traces, where the three traces correspond to data mea-
sured with either full predistortion (H = HextHint), with
predistortion only for the room-temperature electronics
(H = Hext), or with no predistortion at all. The pulses
with full predistortion give a significantly slower decay
than those without; when fitting to an exponential decay
we find a decay constant of N = 537± 22 pulses, giving
an average error per pulse of 1/N = (0.186 ± 0.008)%,
which corresponds to a fidelity of 0.99814. The error
rate achieved here is a few times lower than the the-
oretical threshold of 0.75% required for implementing
fault-tolerant quantum computation with surface codes
[13, 26].

In Fig. 4(b) we plot the average error per gate ver-
sus pulse width tpw, with the pulse period set to T =
3 tpw. The predistorted pulses perform better for all pulse
widths, showing that the pulse shapes have improved and
again confirming the validity of our method for determin-
ing the transfer function Hint. The general trend is that
the gate error is reduced for shorter pulses; this decreases
the total time ttotal = N T of the sequences, thereby re-
ducing the errors due to loss of qubit coherence. The
relevant coherence time during the RBM sequence is a
combination of T1, T2, and the coherence time during
driven evolution; for simplicity we plot the expected error
rate if the pulse errors were limited by T1 = 12µs [dashed
line in Fig. 4(b)]. This limit is a factor of two lower than
our best results, indicating that the predistorted pulses
still contain some pulse imperfections. We speculate that
parts of the remaining errors are due to in-phase pulse
distortions, which are not targeted with the method pre-
sented here. A similar scheme may be developed to inves-
tigate the in-phase errors independently. Another com-
plication is that, in our system, T1 is strongly reduced
when driving the qubit continuously at Rabi frequencies
above 100 MHz, probably due to local heating [27]. This
may contribute to pulse errors for short pulses (where the
drive amplitude A ∝ 1/tpw becomes large). At high drive
amplitudes the Bloch-Siegert shift will also start to intro-
duce deviations from the rotating-wave approximation in
Eq. (1).

To summarize, we have demonstrated a new technique
of using a qubit to determine and correct microwave pulse
imperfections, which for this sample allowed us to reduce
the average error per gate by 37% and generate single-
qubit rotations with an average gate fidelity better than
0.998. Even though there have been reports of supercon-
ducting qubits in 3D cavities with coherence times ap-
proaching 100µs [28, 29], we note that we obtain a higher
gate fidelity in our system because we are able to create
shorter pulses. By encoding the pulse imperfections into
a slow rotation when applying many pulses, we are able
to detect distortions on a nanosecond timescale without
the need of a fast detector. This makes our method very
general, and it can be applied to any quantum computing
architecture where single-qubit gates are implemented by
applying microwave pulses at the qubit frequency.
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