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A comparison between existing nuclear magnetic resonance measurements and calculations of the
scalar spin-spin interaction (J-coupling) in deuterated molecular hydrogen (HD) yields stringent
constraints on anomalous spin-dependent potentials between nucleons at the atomic scale (∼ 1 Å).
The dimensionless coupling constant gpP g

N
P /4π associated with exchange of pseudoscalar (axion-like)

bosons between nucleons is constrained to be less than 3.6 × 10−7 for boson masses in the range of
5 keV, representing improvement by a factor of 100 over previous constraints. The dimensionless
coupling constant gpAg

N
A /4π associated with exchange of an axial-vector boson between nucleons is

constrained to be gpAg
N
A /4π < 1.3 × 10−19 for bosons of mass <∼ 1000 eV, improving constraints

at this distance scale by a factor of 100 for proton-proton couplings and more than 8 orders of
magnitude for neutron-proton couplings.

PACS numbers: 14.80.Va, 11.40.Ha, 21.30.-x

Over the past few decades, searches for anomalous
spin-dependent forces have drawn considerable interest as
a signature of the axion [1], a hypothetical pseudoscalar
Goldstone boson [2, 3] arising from the Peccei-Quinn so-
lution to the strong-CP problem [4, 5]. Axions are also
appealing as a candidate for dark matter [6]. A recent
review of constraints on axion-nucleon interactions can
be found in Ref. [7]. Other exotic spin-dependent inter-
actions are predicted by a variety of novel theories such
as those involving para-photons [8] and unparticles [9].
The possible spin-dependent forces that could arise from
exchange of scalar/pseudoscalar or vector gauge bosons
are enumerated in Ref. [10]. Another theoretical frame-
work for considering anomalous spin-dependent interac-
tions comes from introducing non-zero torsion into gen-
eral relativity, which causes gravity to acquire scalar and
vector components that manifest as new spin-mass and
spin-spin couplings [11–14]. Spontaneous Lorentz viola-
tion may also generate exotic spin-dependent interactions
[15].

Most prior work on exotic spin-dependent forces has
been macroscopic in scale, sensitive to new forces at
length scales ranging from µm to m. On this scale, con-
straints on anomalous dipole-dipole interactions between
neutrons [16, 17], between electrons [18, 19], and be-
tween electrons and nuclei [20] have been reported. Spin
relaxation studies of hyperpolarized 3He gas have been
used to limit anomalous dipole-dipole interactions be-
tween neutrons at length scales of about 100 nm [21].
For a more thorough review, including constraints on
monopole-dipole interactions, see Ref. [7]. Because of the
possibility that new force-mediating bosons may be mas-
sive and have limited range, it is of considerable interest
to find experimental techniques to search for anomalous
spin-dependent interactions at even shorter distances.

Here we discuss constraints on the existence of anoma-
lous dipole-dipole forces on angstrom length scales, cor-
responding to exchange of particles with mass in the
keV range. Our constraints are obtained by compari-
son of nuclear magnetic resonance (NMR) measurements
and theoretical calculations of J-coupling in deuterated
molecular hydrogen (HD). Such couplings have the form
JI · S (here I and S are nuclear spin operators) and
arise due to a second-order hyperfine interaction. To
our knowledge, the only constraints on anomalous nu-
clear dipole-dipole couplings at these length scales come
from Ramsey’s molecular-beam measurements of H2 [22]
and studies of spin-exchange collisions between 3He and
Na [23]. Atomic-scale constraints on anomalous dipole-
dipole couplings between electrons and nuclei, mediated
by exchange of axial-vector bosons, have recently been
obtained from the hyperfine structure of hydrogen-like
atoms [24–26]. The constraints derived in this letter rep-
resent a factor of 102 to 108 improvement over previously
derived laboratory limits on anomalous spin-dependent
forces at the Å range.

There are several additional noteworthy features of
the analysis presented here. Constraining monopole-
dipole interactions is appealing because such couplings
violate invariance under both time reversal (T ) and spa-
tial inversion (P ), and hence one expects negligible back-
ground from Standard Model physics. Dipole-dipole cou-
plings, on the other hand, are even under both T and
P , and arise from Standard Model physics. In this
sense, dipole-dipole couplings may appear less attractive
in searches for exotic physics because one must carefully
calculate the effects of Standard Model physics. De-
spite this difficulty, our analysis results in constraints
that are within two orders of magnitude of hadronic ax-
ion models. This is significantly closer than limits on
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monopole-dipole couplings come to constraining QCD
axions (see, e.g. Ref. [27]). Furthermore, axion me-
diated dipole-dipole coupling scales as 1/f4a , (fa is the
Peccei-Quinn symmetry breaking parameter) indepen-
dent of the QCD θ parameter. In contrast monopole-
dipole and monopole-monopole coupling depend on θ as
θ/f3a and θ2/f2a , respectively [1]. Therefore, interpreting
limits on monopole-dipole or monopole-monopole cou-
plings as a constraint on fa comes with large uncertainty
related to the size of the θ parameter. In many discus-
sions, θ is taken to be on the order of 10−10 based on
limits from the neutron electric dipole moment exper-
iments, however it may be much smaller, relaxing the
constraints on fa.

We also note that stringent constraints on axion cou-
plings can be obtained from astrophysical observations.
Electron-axion or photon-axion couplings can be con-
strained by cooling rates of low-mass stars [28, 29], re-

quiring the axion mass be less than 10−2 eV. Constraints
on nucleon-axion interactions can be obtained from su-
pernova SN1987A [30] or the metallicity of red giant stars
[31]. The 14.4 keV emission line of 57Fe also constrains
nucleon-axion couplings [32]. These astrophysical con-
straints are somewhat particular to the axion, and do
not apply to other pseudoscalar bosons or axial-vector
interactions [10, 33]. In the case of SN1987A, theoretical
uncertainties in the isoscalar coupling loosen the derived
constraints [30], leaving open the possibility of axion-
nucleon couplings with gN > 10−5. The analysis pre-
sented here thus constrains a region of parameter space
not constrained by SN1987A.

Moody and Wilczek discuss the potentials arising from
the exchange of pseudoscalar (P ) axion-like particles [1]
in the non-relativistic limit. The dipole-dipole potential
has the form

V3(r) =
g1P g

2
P

16πM1M2
e−mr

[
{σ̂1 · σ̂2 − 3(σ̂1 · r̂)(σ̂2 · r̂)}

(
m

r2
+

1

r3

)
− (σ̂1 · r̂)(σ̂2 · r̂)

m2

r

]
. (1)

Here, we work in units where h̄ = c = 1, m is the mass
of the axion-like particle, g1P g

2
P /(4π) is the dimensionless

pseudoscalar coupling constant between the particles, M1

and M2 are their respective masses, and r is the distance
(in units of inverse energy) separating the two particles.
The subscript on the left-hand side is chosen to match the
notation of Ref. [10]. We also note that a δ-function con-
tribution to V3(r) is neglected here because of Coulomb
repulsion of the two nuclei.

The measurements from which we extract our con-
straints occur in gas phase, in which the internuclear
vector r̂ suffers random reorientation due to collisions,
leading to averaging of Eq. (1). The first term in braces
has the same angular dependence as the usual magnetic
dipolar interaction and averages to zero. After averag-
ing, the second term is proportional to σ̂1 · σ̂2, yielding an
effective anomalous J-coupling ∆J3I · S, where I and S
are the respective spins of the proton and deuteron, with

∆J3 =
gpP g

D
P

4π

1

2M2
p

m2e−mr

3r
. (2)

Here, gDP = gnP + gpP , we have made the approximation
that the neutron and proton masses are equal, Mn =
Mp, and we assume that the proton and neutron of the
deuteron each contribute roughly equally to the spin, S,
of the deuteron, 〈σ̂p〉 = 〈σ̂n〉 = S.

Several measurements and calculations of J for HD
can be found in the literature, as summarized in Table
I. Except for the most recent set of calculations [34],

Reference Jexpt (Hz) Conditions

[34] 43.26(6)-0.17 = 43.09(6) 300 K

[35] 43.115(12) 40 K

[36] 42.94(4) 40 K

[37] 43.07(2) 40 K

Mean 43.093(10)

Reference Jtheory (Hz) Method

[38] 41.00+1.89+0.06+0.03 = 42.98 GTO

[39] 41.135+1.89+0.06+0.03 = 43.115 MCSCF

[40] 41.17+1.89+0.06+0.03 = 43.15 SOPPA(CCSD)

[34] 41.16+1.89+0.06+0.03 = 43.14(5) FCI

Mean 43.096(78)

TABLE I: Summary of experimental measurements and the-
oretical calculations. Experiments have been corrected to
a temperature of 40 K as appropriate. GTO: Gaussian-
type orbitals, MCSCF: multiconfigurational self-consistent
field, SOPPA(CCSD): second-order polarization propagator
with coupled-cluster singles-doubles amplitudes, FCI: full
configuration-interaction. Theoretical results are presented
as a sum of four contributions, as described in the text.

no estimate of the theoretical uncertainty was reported.
Measurements in Refs. [35–37] were performed at 40 K,
while the recent measurements of [34] were performed at
300 K. The value reported in Table I has been corrected
to 40 K by subtracting 0.17 Hz, the theoretical temper-
ature dependence reported in Ref. [34]. Despite slightly
different conditions, measurements are consistent with
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each other, except for the unpublished results of Beck-
ett [36]. The weighted mean of all four measurements
is Jexpt = 43.093(10) Hz with a chi-squared of χ2

ν = 6.5
for ν = 3 degrees of freedom. Scaling the uncertainty
of the weighted mean by

√
χ2
ν gives a final experimental

uncertainty of 0.025 Hz. The theoretical values reported
in Table I are presented as a sum of four contributions:
the equilibrium value for R = 1.4a0, the zero-point vibra-
tional correction (1.89 Hz), a small correction to account
for the actual equilibrium value R = 1.40117a0 (0.06 Hz)
discussed in Ref. [34], and a still smaller temperature
correction (0.03 Hz). The mean of the theoretical calcu-
lations is Jtheory = 43.096(78) Hz, where the uncertainty
is determined by the standard deviation of the four calcu-
lations. The agreement between theory and experiment
is thus |∆J3| = 0.003(83) Hz, where the final uncertainty
is the result of adding theoretical and experimental er-
rors in quadrature. We interpret this as an upper bound
on the magnitude of an anomalous spin-coupling at the
two-sigma level of |∆J3| < 0.17 Hz (7.0× 10−16 eV).

One could make the case for omitting the unpub-
lished experimental result [36] as an outlier. The re-
sulting weighted mean is Jexpt = 43.102(10) Hz with
χ2
ν = 1.9 for two degrees of freedom. Scaling the un-

certainty in the weighted mean by
√
χ2
ν gives an exper-

imental uncertainty in this case of 0.014 Hz. One could
also make the case for omitting the theoretical result pre-
sented in Ref. [38] as an outlier, based on slow basis-set
convergence of their calculation. This would result in
Jtheory = 43.132(18) Hz. In this case the deviation be-
tween theory and experiment is |∆J3| = 0.032(22) Hz,
corresponding to a two-sigma constraint |∆J3| < 0.08 Hz.

Adopting the more conservative constraint on ∆J3,
the dimensionless coupling parameter gDP g

p
P /4π can be

excluded from the light shaded region bound by the
dashed line in Fig. 1. The strongest constraint occurs
for bosons with mass m = 2/r = 5300 eV for which
gDP g

p
P /4π < 3.6 × 10−7. For comparison, the darker

shaded region bounded by the dashed line shows the
limits obtained from Ramsey’s molecular beam measure-
ments [22] of HH dipole-dipole interactions, where non-
magnetic contributions are constrained to be less than
KNM < 70 Hz, (3 × 10−13 eV), at the 2 − σ level. The
form of the interaction Ramsey considered differs from
Eq. (1) in its angular dependence, however it can be
approximately interpreted as

KNM =
(gpP )2

4π

1

4M2
p

(
1

r3
+
m

r2
+
m2

r

)
e−mr. (3)

This limit (2 − σ level) is indicated by the dark shaded
region bounded by the solid line in Fig. 1.

We note that our constraints are within two orders
of magnitude of standard axion models. In particular,
the relation between the coupling strength and the ax-
ion mass for KSVZ (Kim-Shifman-Vainshtain-Zakharov)

KSVZ
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FIG. 1: Constraint (at the 2-σ level) on the dimension-
less coupling constant gNP g

p
P /4π associated with the dipole-

dipole potential, V3(r), as a function of the exchange boson
mass, obtained from comparison of measured and calculated
J-coupling parameters for HD (dashed line, light gray fill),
where gNP = gnP +gpP . Also shown is the existing constraint on
p− p pseudoscalar couplings from Ref. [22] (solid line, darker
fill). The straight line represents axion coupling in the KSVZ
axion model.

type axions (see, e.g. Ref. [42] for a brief review) is
given by the straight line in Fig. 1. Details of this calcu-
lation can be found in the Supplemental Material. Con-
straints obtained from HD come closer to constraining
QCD axions than other low-energy laboratory limits on
monopole-dipole couplings [27]. We acknowledge that
high-energy experiments also provide stringent labora-
tory constraints on axion-nucleon coupling (see Supple-
mental Material), however they are not specifically sen-
sitive to the spin-dependence of the interaction.

In addition to pseudoscalar axion-like particles, the
presently considered set of measurements and calcula-
tions can be used to constrain spin-dependent forces due
to exchange of other particles. In the case of spin-1 axial
vector (A) bosons, there arises a Yukawa potential [10]

V2(r) =
g1Ag

2
A

4π

1

r
σ̂1 · σ̂2e−mr. (4)

Again assuming that the nucleons in deuterium con-
tribute equally to its spin, we find that in the limit of
massless bosons (gpA + gnA)gpA/4π < ∆Jr/2 = 1.3× 10−19

at the 2−σ level. Constraints as a function of boson mass
are shown in Fig. 2 (curve 1), along with constraints ob-
tained from Ramsey’s measurements in H2 (curve 4). We
also show the spin-dependent constraints between elec-
tron and neutron (curve 2) or proton (curve 3), obtained
from measurements and calculations of the 2s hyperfine
state in atomic hydrogen and deuterium [25]. The lim-
its obtained from spin-exchange cross sections in 3He-Ne
collisions [23] are about eight orders of magnitude worse
than obtained in the case of HD J-coupling.

Finally, we point out that J-coupling measurements in
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FIG. 2: Constraints (at the 2-σ level) on the dimensionless
coupling constants g1Ag

2
A/(4π) as a function of the mass of an

axial vector bosons (A) between nucleons [V2(r), see Eq. (4)].
Curve (1) shows the constraints obtained from the J-coupling
interaction in HD, where 1 = p and g2A = gnA + gpA. Curves
(2) and (3) show the respective constraints on e−n and e−p
axial vector couplings from Ref. [25]. Curve (4) shows the
constraints obtained from Ramsey’s measurements of proton-
proton dipole-dipole coupling in molecular H2.

an isotropic liquid or gas, where molecules rapidly rotate,
are most sensitive to exchange of axion-like particles with
masses in the range of 2/r [see Eq. (2)]. If the molecule
is placed in an anisotropic environment such as a liquid
crystal, tumbling is inhibited and the molecule becomes
partially oriented, thereby rendering the term in curly
brackets in Eq. (1) observable. This term is largest for
pseudoscalar exchange boson mass m = 0. Therefore,
precise calculations and measurements of dipole-dipole
couplings in liquid crystal environments may yield im-
proved constraints on light pseudoscalar bosons. Accu-
rate measurements and calculations of dipole-dipole cou-
plings in partially oriented benzene exist [43], however,
extracting constraints from such complex spin systems is
non-trivial and will be discussed elsewhere.

In conclusion, we have used measurements and theo-
retical calculations of J-coupling in deuterated molecular
hydrogen to constrain spin-dependent forces due to ex-
change of exotic pseudoscalar and axial-vector particles.
This analysis improves by over two orders of magnitude
the constraints obtained by Ramsey’s comparison of ex-
periment and theory on the dipole-dipole coupling of pro-
tons in molecular hydrogen. In particular the constraints
on the exchange of axion-like pseudoscalar particles, is
improved by a factor of 102 in the mass range of 102−104

eV. This analysis also places stringent constraints on the
exchange of photon-like lightweight axial-vector bosons,
improving constraints by eight orders of magnitude over
limits placed on the proton-neutron couplings, compared
to an analysis of spin-exchange in sodium and 3He. New
experimental techniques to measure scalar couplings with

extremely high accuracy based on ultra-low field NMR
[44] could lead to improvements in experimental pre-
cision. Combined with improved theoretical methods,
comparison of scalar or dipole-dipole couplings may fur-
ther constrain spin-dependent forces. An improvement
in the pseudoscalar coupling limit by two orders of mag-
nitude would bring these constraints into the range of
standard axion models, providing a new set of purely
laboratory limits on the QCD axion in the keV range. In
order to substantially improve these limits it is desirable
to find spin systems with a naturally small J coupling to
reduce the requirements for precision calculations of stan-
dard model interactions. In this regard it is interesting
to consider chemically unbound spin systems. A finite J
coupling can still arise due to second-order hyperfine in-
teraction in van der Waals molecules [45]. For example,
in a mixture of liquid 129Xe and pentane, a J coupling
of -2.7 Hz was measured, in agreement with predictions
[46]. Lighter atoms would have even smaller J-coupling
[47]. A liquid H2 −3 He mixture [48] may be interest-
ing to consider in this context. Hyperpolarizing 3He in
the mixture would allow one to measure very small fre-
quency shift of 1H NMR using the techniques described
in [46, 49].
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