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Synthetic microswimmers may someday perform medical and technological tasks but predicting
their motion and dispersion is challenging. Here we show that chemically-propelled rods tend to
move on a surface along large circles but curiously show stochastic changes in the sign of the orbit
curvature. By accounting for fluctuation-driven flipping of slightly curved rods, we obtain analytical
predictions for the ensemble behavior in good agreement with our experiments. This shows that
minor defects in swimmer shape can yield major long-term effects on macroscopic dispersion.
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Micro- and nanoscale motors are envisioned to be used
in numerous applications [1–4], including biosensing and
drug delivery in medicine [5], flow control and mixing
in microfluidics [6], and cargo transport and assembly
in nanotechnology [7]. A prototype motor consists of a
bimetallic rod that can be propelled in a fluid of chemical
fuel [8]. Recent studies have focused on the synthesis of
rods with different material compositions to propel them
in various fuels [9–13]. Trajectories with linear, circular,
and undulatory patterns have been observed near sur-
faces [10, 14, 15], and the particle shape has been recog-
nized as a factor [16–18], but a general understanding of
how microscopic features of swimmers affect macroscopic
behavior is not yet complete.

Here we show that while even a slight curvature in
chemically-propelled rods gives them curved orbits when
moving on a surface, it also gives them two stable states
between which they can stochastically switch due to
thermal fluctuations. This greatly affects their dynam-
ics, specifically their directional changes, displacement,
and diffusion over time. We develop, without fitting
parameters, a two-state Fokker-Planck description from
which we make analytical predictions of ensemble quanti-
ties such as the persistence time and particle diffusivity.
These quantities are measured in our experiments and
validate our theory, which is also used to make predic-
tions of aggregation in low-fuel regions.

We fabricated rods of length L = 2.0± 0.2µm and di-
ameter 2R = 0.39 ± 0.04µm [Fig. 1(a), 1(b)], consisting
of platinum (Pt) and gold (Au) segments, by electro-
chemical deposition in anodic aluminum oxide templates
using a previously reported method [19, 20]. These rods
move autonomously in hydrogen peroxide (H2O2) solu-
tions through a local flux of ions which arises from two
paired redox reactions on the metal surfaces [21]. The
positions of ∼100 rods, moving independently along the
surface of a microscope slide, were tracked at 9 frames
per second for up to 150 seconds (10x objective lens of
Nikon Eclipse 80i microscope and Lumenera Infinity 1-3
camera) to analyze trajectories. Varying the ratio of Pt
to Au between 1/3 and 3 did not affect any of the re-

FIG. 1. (color online). Structure and trajectory patterns
of Au-Pt rods. (a) Scanning electron microscopy image of
rods (Zeiss Merlin FESEM). Inset shows the presence of Au
and Pt segments confirmed by energy-dispersive X-ray spec-
troscopy. (b) The rods are not perfectly axisymmetric in
shape. Representative trajectories of (c) slow rods (aver-
age speed U ∼ 8µms−1) and (d) fast rods (U ∼ 39µms−1)
tracked over 15 seconds.

sults reported here, but increase of H2O2 concentration
C (up to 25%) gave an approximately linear increase in
swimming speed.

By altering C and thereby the speed, the trajectory
patterns become strikingly different. Unlike slow rods,
which change direction stochastically through thermal
fluctuations [Fig. 1(c)], fast rods tend to change di-
rection coherently in circular orbits [Fig. 1(d)]. Both
clockwise (CW) and counterclockwise (CCW) orbits are
observed with various radii depending on each rod, as
shown by summing the path curvature along trajectories
[Fig. 2(a)]. Sign changes in the path curvature indicate
that rods switch spontaneously between moving in CW
and CCW orbits. The switches occur less frequently for
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FIG. 2. (color online). Turning and flipping rods. (a) Turn-
ing number, defined as the cumulative sum of path curvature
divided by 2π, plotted for twenty fast rods (average speed
∼38 µms−1). Open circles represent flips, defined to have oc-
curred when the sign of the path curvature switches and then
stays the same for at least three frames. (b) Frequency of
flips plotted against |κ|, estimated for each rod by averaging
the absolute change in total curvature divided by the distance
traveled between flips. The solid lines are given by Eq. (1)
with h0 = 5, 10, 15 nm from left to right, respectively. (c)
Sketch of curved rods flipping between CW and CCW orbits.
(d) A straight rod moves along a series of straight paths. (e)
Slightly curved rod turns and flips. (f) Highly curved rod
turns without flipping.

rods moving in tighter orbits [Fig. 2(b)].

To explore whether the orbits are caused by minor im-
perfections in the rods, which include slight curvatures,
irregular interfaces between Au and Pt, and asperities at
the ends, we propose a simple theory assuming that the
rods are slightly curved. We consider a rod with constant
curvature κ̂ and a prescribed slip velocity along its elon-
gated body in the bulk fluid. Using slender body theory
for a particle in Stokes flow [22] and imposing force-free
and torque-free conditions, a linear system can be ob-
tained for the position and orientation of the rod. Their
solution shows that the rod follows a curved path with
curvature κ comparable to κ̂. The slightly curved rods
[Fig. 1(b)] and their orbits [Fig. 2(a)] are consistent with
κ̂ = 0.12 ± 0.04µm−1 in this simplified theory.

Why do rods switch spontaneously between moving in
CW and CCW orbits? This curious phenomenon can be
explained by assuming that the metallic rods are moving
close to a horizontal surface. Unlike in the bulk fluid
where the rods are free to rotate continuously about their
direction of motion, the presence of the surface restricts
the rods to lie on one side or the other [Fig. 2(c)] so as to
minimize the gravitational potential energy. Curved rods
can flip and switch sides only by rotating and lifting their

center of mass by a height ∆h ∼ κ̂L2/24, which is about
20 nm for rods with typical curvature κ̂ ∼ 0.12µm−1.
For synthetic microswimmers, thermal fluctuations are
sufficient to cause spontaneous flips by raising the height
from a base level h0. The flipping frequency has the form

f = f0e
−∆h/h0, (1)

where f0 ∼ 6 s−1 is the rotation rate around the axis of a
straight rod, estimated from the time-scale of rotational
diffusion of a prolate spheroid of comparable size [23].
Eq. (1) with h0 ∼10 nm shows that a slight curvature in
the rods significantly suppresses the flipping frequency in
agreement with our experimental data [Fig. 2(b)]. The
strong dependence of flipping on apparent rod curva-
ture is consistent with self-propelled rods moving at a
height h0 ∼ 10 nm above the substrate. This height
has the same order of magnitude as the expected sedi-
mentation height of passive rods in thermal equilibrium
kBT/2mg ∼ 40 nm, where kB is the Boltzmann constant,
T is the room temperature, m is the mass, and g is the
gravitational acceleration. However, such small distances
cannot be resolved using optical microscopy. Perhaps,
chemical reactions and self-propulsion could change the
effective temperature of this out-of-equilibrium system
and so change the sedimentation height of self-propelled
rods. It would seem likely though that our curved rods
are no more than 20nm above the surface for them to
show a flipping dynamics between two states as in our
observations [24].
What are the long-term implications of flipping? Mi-

nor variations in rod curvature lead to major changes
in trajectory patterns [Fig. 2(d)-(f)] and affect disper-
sion. To gain quantitative insight into the long-term ef-
fects of flipping, we formulate a two-dimensional model
of flipping rods with translational and rotational diffu-
sion coefficients D̄ and Dr respectively. The difference in
translational diffusions along and across the rod axis is
neglected for simplicity. In the absence of thermal fluc-
tuations, each rod is assumed to translate with speed
U in the axial direction n = (cos θ, sin θ) and turn with
angular speed Uκ. The rods tend to follow paths with
curvature κ taking either of the two values ±κ0, where
the sign switches at a characteristic rate f . The center
of mass x = (x, y), the orientation angle θ, and the cur-
vature κ are evolved over time-step ∆t according to the
stochastic equations of motion,

x(t+∆t)− x(t) = Un[θ(t)]∆t+
√

2D̄∆tX, (2)

θ(t+∆t)− θ(t) = Uκ(t)∆t+
√

2Dr∆tΘ, (3)

κ(t+∆t)− κ(t) = −2κ(t)B, (4)

where the components of X and Θ are random vari-
ables with a standard normal distribution and B is a
Bernoulli random variable with success probability f∆t.
Up to 500 particles are simulated with various prescribed
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FIG. 3. (color online). Measured and predicted changes in
direction of self-propelled rods. (a) Correlation in direction
of three sets of rods moving at different speeds U . Experi-
mental data (symbols) have error bars representing lower and
upper quartiles. Corresponding predictions (lines) are given
by Eq. (6). (b) Persistence time and its error bars decrease
with speed in our experiments (circles), simulations (crosses),
and theory (solid line).

speeds U and fixed parameter values D̄ = 0.3µm2 s−1,
Dr = 1.0 s−1, and κ0 = 0.12µm−1, which are all esti-
mated from our experiments, and f = 0.9 s−1 estimated
using Eq. (1). The results are incorporated into Fig. 3(b)
and 4(b) described below. To study the ensemble behav-
ior, we represent the configuration of rods by the prob-
ability distribution functions [25] Ψ±(x, θ,±κ0, t), which
evolve according to the Fokker-Planck equation associ-
ated with the Langevin Eqs. (2)-(4). The evolution is
described by the conservation equation

∂Ψ±

∂t
+∇ · (ẋΨ±) +

∂

∂θ

(

θ̇Ψ±

)

= f(Ψ∓ −Ψ±), (5)

where ẋ = Un(θ)−D̄∇ logΨ±, θ̇ = ±Uκ0−Dr
∂
∂θ logΨ±.

Important ensemble quantities, such as the expected
change in orientation and mean-square displacement
(MSD) over time, can be derived analytically from
Eq. (5) and compared directly with our experiments.
This model is different from earlier models of synthetic

microswimmers, which are commonly assumed to un-
dergo a succession of straight directed runs followed by
random changes in direction [15, 26]. Our model is sim-
ilar to that for “circle swimmers” [27] experiencing an
effective Lorentz force, except that in ours the angular
velocity switches between two discrete values. This same
switching process was formulated independently [28] in
a model of the zooplankton Daphnia [29], and a partic-
ular generalization of this model was developed recently
to calculate effective diffusivity [30].
To test our model against experiments, first consider

the time-dependent expected change in orientation of
three sets of rods moving at different speeds [Fig. 3(a)].
The experimental data decay over time in good agree-
ment with our prediction

〈cos∆θ〉(t) = Re{c+e−σ+ft + c−e
−σ

−
ft}, (6)

where 〈·〉 =
∫

Ω
dAx

∫ 2π

0
dθ · (Ψ+ + Ψ−), σ± = 1 +

Dr/f ±
√
λ, c± = (1∓ λ−1/2)/2, and λ = 1− (Uκ0/f)

2.

FIG. 4. (color online). Measured and predicted diffusion
of rods. (a) MSD of rods moving at various speeds in six
different experiments (symbols). Predictions (lines) are given
by Eq. (7). (b) Diffusivity saturates with increasing speed in
our experiments (circles), simulations (crosses), and theory
(solid line). Theoretical curves are given by Eq. (8) with
κ0 = 0 for no curvature and f = 0 for no flipping.

Eq. (6) is obtained by solving a linear system of ODEs
for 〈cos∆θ〉(t) and 〈κ sin∆θ〉(t), which follow from mul-
tiplying Eq. (5) by cos∆θ and separately by κ sin∆θ
and then integrating over θ and x. For fast rods with
λ < 0, the real part of Eq. (6) is taken and exhibits oscil-
latory behavior. The time when 〈cos∆θ〉 decays to e−1

gives a measure of the typical time needed for rods to
change orientations (persistence time), which is shown
in Fig. 3(b) for rods moving at various speeds in our ex-
periments, simulations, and theory. The persistence time
decreases systematically with smaller error bars at higher
speeds, which can be explained only by assuming that the
rods are curved. Contrary to slow rods which change di-
rection stochastically through thermal fluctuations, suf-
ficiently fast rods change direction deterministically and
more rapidly because of their intrinsic curvature.
The model is tested further by measuring the time-

dependent MSD of rods with different speeds, controlled
by varying C in six different experiments [Fig. 4(a)]. Self-
propelled rods exhibit nearly ballistic behavior over short
times and diffusive behavior over times longer than about
a second, all in excellent agreement with our prediction

〈∆x
2〉(t) = 4Dt+Re{d+(e−σ+ft − 1)+ d−(e

−σ
−
ft − 1)},

(7)
where d± = (1− λ)(1 ∓ λ−1/2)/(σ2

±κ
2
0) and

D = D̄ +
U2(Dr + 2f)

2U2κ2
0 + 2Dr(Dr + 2f)

(8)

is the effective diffusion coefficient or diffusivity. Eq. (7)
is obtained by solving a linear system of ODEs for 〈x2〉(t),
〈x ·n〉(t), and 〈κx · dn/dθ〉(t), which are all derived from
Eq. (5) like in the earlier derivation of Eq. (6). The
diffusivity of rods moving at various speeds is shown
in Fig. 4(b), estimated by averaging 〈∆x

2〉/4t for large
times in our experiments and simulations. The diffusiv-
ity is overestimated if the rods are assumed to move in a
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FIG. 5. (color online). Long-time swimmer concentrations
C̄ (symbols and solid lines) in chemical fuel gradients. Swim-
ming speeds U(x) (blue dashed lines) are prescribed and range
from (a) 0 to 40µms−1 or (b) 40 to 80µms−1. Symbols show
simulations of straight and curved rods thirty minutes after
initiating with uniform distribution C̄0. Solid lines are corre-
sponding numerical solutions to the steady form of Eq. (5).

series of straight paths [15, 26] and underestimated if the
rods are assumed to turn without flipping [27]. However,
the data agree quantitatively with Eq. (8) after incorpo-
rating the effects of flipping. The diffusivity saturates
with increasing speed because faster rods remain local-
ized by completing more orbits, but our model shows that
the diffusivity can be enhanced with more frequent flips.

Having been validated against experiments, our model
can be used to make predictions of how ensembles of mi-
croswimmers migrate in spatially-varying environments.
As an example, the long-term effects of a spatial gradient
in fuel concentration are demonstrated. Since the swim-
ming speed varies linearly with H2O2 concentration, U
is prescribed as a function of space in our model, with U
increasing linearly in x from the origin to the boundaries
at x = ±500µm (where periodic boundary conditions
are applied). Initially, 10,000 particles are distributed
uniformly in −500 < x, y < 500µm, and Eqs. (2)-(4)
simulated over long times. The particles are assumed
to not interact with each other. After a slow migration,
swimmers aggregate in the region of low fuel or diffu-
sivity for 0 ≤ U ≤ 40µms−1 [Fig. 5(a)]. Numerical
solutions to the steady-state form of Eq. (5), modified
to account for spatially varying swimming speed, show
that the swimmer concentration increases with lower dif-
fusivity, in agreement with an earlier model of bacterial
chemotaxis [31]. The long-time distribution of swimmers
is very different for 40 ≤ U ≤ 80µms−1, which has the
same gradient but a higher baseline [Fig. 5(b)]. Straight
rods still aggregate but only weakly in the region of low
fuel. The distribution of curved rods remains more uni-
form because their diffusivity saturates at higher speeds.

Whether these predictions of migration and aggrega-
tion are correct remains an open question. Experiments
using an H2O2-soaked agarose gel to set up a gradi-
ent have shown aggregation of swimmers at the gel af-
ter many hours [32]. This observation apparently dis-
agrees with our predictions, but may well be compli-
cated by additional effects, such as large-scale gradient-

driven flows [33] and localized changes in fluid viscosity.
Further experiments using microfluidic techniques would
shed more light on the possible mechanisms of aggrega-
tion in chemical gradients.

Near confining boundaries, swimmers with a tendency
to turn are expected to aggregate near walls as they slide
along the walls for prolonged periods [27]. While this ef-
fect may be useful for sorting curved rods according to
their level of curvature, their stochastic flips must have
a large effect on how they interact with walls and navi-
gate through geometrically complex environments. Un-
derstanding how synthetic swimmers perform according
to their shape, size, and environment may offer new di-
rections to efficiently design, control, and operate micro-
scopic devices in medical and technological applications,
as well as serve as templates for new smart materials.

While synthetic biomimetic systems are worthy of
study in their own right, it is often argued that they can
shed light on their biological counterparts by being sim-
pler and lacking the unknowns associated with behavior.
Perhaps this is such a case. As implied already, the zoo-
plankton Daphnia swims with angular velocity switching
between two dominant values, and gliding organisms like
the cresent-shaped Toxoplasma gondii can flip the body
repeatedly [34], both of which move like the flipping rods
described herein (despite fundamental differences in the
mechanism of motility). An important aspect of our syn-
thetic system is that the driving stochasticity can be pre-
cisely characterized as arising from thermal fluctuations
with energy scale kBT . Their relative contribution to the
dynamics can be tuned so as to systematically explore
the ensemble dynamics from stochastically-dominated to
more deterministic regimes.
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