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We theoretically describe the dynamics of swimmer populations in rigidly-confined thin liquid
films. We first demonstrate that hydrodynamic interactions between confined swimmers depend
solely on their shape and are independent of their specific swimming mechanism. We also show that
due to friction with the nearby rigid walls, confined swimmers do not just reorient in flow gradients

but also in uniform flows.

We then quantify the consequences of these microscopic interaction

rules on the large-scale hydrodynamics of isotropic populations. We investigate in details their
stability and the resulting phase behavior, highlighting the differences with conventional active,
three-dimensional suspensions. Two classes of polar swimmers are distinguished depending on their
geometrical polarity. The first class gives rise to coherent directed motion at all scales whereas for
the second class we predict the spontaneous formation of coherent clusters (swarms).

PACS numbers: 47.63.mf, 82.70.Kj,87.18.Hf,

Soft materials composed of motile particles have
seen a surge of interest over the last couple of years.
They encompass auto-phoretic colloids [1], self-propelled
droplets [2], and vibrated grains [3, 4]. This interest was
triggered by their remarkable structural and transport
properties akin to the one found in biological systems
such as bacterial suspensions, migrating cells, and cy-
toskeletal extracts (see Ref. [5] and references therein).
These so-called active fluids are ensembles of self-driven
particles capable of self-propulsion in the absence of any
external actuation [5-9).

From a theoretical perspective, such systems are com-
monly separated into two classes depending on the way
they exchange momentum with their surroundings [5-7].
"Dry" systems, typically walkers, or crawlers, achieve lo-
comotion by transferring momentum to a rigid substrate,
and interact via short range contact interactions. In
contrast "wet" systems, typically suspensions of swim-
mers, conserve momentum, and the particles interact at
finite distance via long-range hydrodynamic interactions.
A number of experimentally relevant situations involve
monolayers of active particles living in rigidly-confined
fluid films, and thus belong to both classes — e.g. bacte-
ria swimming in micrometer-thick films at the surface of
cell-culture gels [10-12], or active colloids and droplets
moving in microfluidic channels [2].

In this letter, we describe the phase behavior of ac-
tive fluids confined, at least by one rigid wall, in two-
dimensional (2D) geometries. In order to do so, we first
revisit the description of hydrodynamic interactions un-
der rigid confinement. We demonstrate that the far-
field flow induced by a swimmer does not depend on
the specifics of its swimming mechanism. The notions
of pushers and pullers for instance, prevalent in three
dimensions (3D), are found to no longer be relevant in
rigidly-confined thin films [13]|. In addition, on the basis

of a prototypal microscopic model, we show that due to
friction with the walls, rigidly-confined polar swimmers
are not only prone to align along the local elongation
axis but with the flow field itself. We then exploit these
new interactions rules in 2D to address the large-scale dy-
namics of confined populations of swimmers. We estab-
lish a novel set of hydrodynamic equations for confined
active films, which qualitatively differ from the modi-
fied Leslie-Eriksen equations for active liquid crystals [5].
An investigation of the resulting phase behavior leads to
the distinction between two classes of polar swimmers
depending on their geometrical polarity. The first class
(large-head), gives rise to the emergence of coherent par-
ticle motion along the same direction at all scales whereas
for the second class (large-tail), we predict the sponta-
neous formation of coherent clusters (swarms).

Let us consider an ensemble of self-propelled particles
confined in a thin film of a Newtonian liquid between two
rigid walls, or by one rigid wall and a free surface. We
address strongly confined geometries where the particle
height is comparable to the film thickness, h, see Fig. 1
(left). At scales larger than h, the fluid flow is character-
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FIG. 1: Left: Sketch of a confined suspension of active parti-
cles swimming freely in the (z,y) plane. Right: Close-up on a
single polar swimmer (see text for notation). The active par-
ticles are confined between two rigid walls in the z-direction.



ized by the projection of the z-averaged velocity field in
the (z,y) plane. Far from a swimmer, the projected flow
field u(r,t) is potential

u(r) = —GVII(r), (1)

where II(r) is the pressure at r = (z,y).
factor G scales as G ~ h% /1.

How does confinement affect hydrodynamic interac-
tions between swimmers? In unbounded fluids, the flow
induced by a swimmer depends on the microscopic details
of the propulsion mechanism [14-16]. In the far-field,
this flow is often well approximated, at leading order,
by a force-dipole singularity, with a ~ 1/r? spatial de-
cay, and as such has been used in most theoretical mod-
els [13, 17-19|. This description results in the distinction
between so-called pushers (or extensile swimmers), and
pullers (or contractile swimmers). They corresponds to
force-dipoles having opposite signs, and displaying dif-
ferent large scale dynamics [13, 17, 18]. When confined
by solid walls, these flows are screened algebraically and
decay as ~ 1/r3, while retaining their angular symmetry.
This screening of hydrodynamic interactions was shown
to suppress generic instabilities, which are the hallmark
of isotropic pusher suspensions [5].

As it turns out, however, the two main consequences
of confinement have actually been overlooked so far. Any
multipolar stress distribution on the surface of the swim-
mer actually yields only subdominant contributions to
the flow in the far field. For any particle-transport mech-
anism (swimming, driving, advection) the far-field flow
induced by a particle moving in a confined fluid has in-
stead the symmetry of a potential source-dipole and de-
cays as ~ 1/r% |21, 22]. The usual distinction done be-
tween pushers and pullers becomes thus irrelevant under
rigid confinement [13, 17]. Irrespective of the propulsion
mechanism, the flow induced by a swimmer located at
r = R(t) is defined by Eq. (1) and by a modified incom-
pressibility relation,

The Darcy

V-u(r) = -0 -Vi(r —R(t)), (2)

where the dipole strength is o = ¢ [R(t) —ulO(R(t))],
where u(® is the velocity field in absence of the particle,
and o scales as the square of the particle size (for a disk-
shape particle, o is twice the particle area) [22]. The
dipolar solution, ud(r|R(t),o), of Egs. (1)-(2) is given,
for a particle located at the origin, by

ul(r0,0) = (2t —1) - o, (3)

27|r|?
with # = r/|r| and I the identity tensor [21, 22]. This
framework has proven to accurately describe the interac-
tions between confined advected droplets even in concen-
trated systems [20, 22]. Importantly, the angular sym-
metry of u? is different from the one of a force dipole: it
is a polar flow field displaying the same angular depen-
dence as that of a force monopole under confinement [21]

despite the swimmers being self-driven. The reason for
this apparent paradox lies in the continuous momentum
exchange with the confining rigid walls, via the shear flow
in the thin films that lubricate the swimmer-wall contacts
(Fig. 1).

The second important difference with 3D suspensions
concerns hydrodynamic interactions between swimmers.
In order to account for these interactions, we first estab-
lish the equations of motion of an isolated swimmer in a
arbitrary fluid flow. We focus on swimming bodies with
polar shapes (i.e. front-back asymmetric), as is the case
for most motile cells. For a swimmer at position R(¢) we
denote p(t) its orientation (|p|? = 1) and vy the magni-
tude of its swimming velocity along p. From symmetry
considerations and at leading order in |Vu|, the equa-
tions of motion of a polar swimmer for {R(t), p(¢)} take
the generic form

Ro = vspa + 11 (0ap — Dap)us + 1 (Paps)us,  (4)
Da = V<5045 - papﬂ)uﬁ + 1/(5045 - papﬁ)(v’YuB)p’W (5)

where 11 (resp. p) is a transverse (resp. longitudinal)
mobility coefficient and v and v’ are two rotational mo-
bility coefficients. To better understand the effect of con-
finement on particle motion, let us first consider the ad-
vection of a passive particle by a uniform, unbounded
flow. In that case, the velocity field is uniform every-
where in space and the passive particle undergoes trans-
lation at the same speed as the fluid. In an unbounded
fluids, we therefore have v = 0, pu; = p = 1, and
Eq. (5) reduces then to Jeffrey’s equation commonly used
to quantify the orientation of anisotropic particles with
the flow-elongation axis [13, 14].

In contrast, rigidly-confined suspensions offer the pos-
sibility of having a nonzero value for v. Instead of re-
orienting due to flow gradients, swimmers can reorient
because of the flow itself, a new type of orientational
dynamics, which has not been considered so far. To pro-
vide insight into the conditions for nonzero values of v,
we derive the equations of motion above for a prototy-
pal microscopic model (dumbbell). We show how the
lubricated friction with the walls induce both anisotropic
mobility (u1 # py) and a direct coupling between the
flow velocity and the particle orientation (v # 0). Con-
sider a rigid-dumbbell swimmer, composed of two disks
of radius by (resp. by) located at Ry (resp. Rz), and con-
nected by a frictionless rigid rod of length a > {b1, ba}
(see Fig. 1, right). The lubrication forces between a disk-
shape particle and the solid walls hinder its advection by
the fluid. Passive disks would be transported at a ve-
locity R;(t) = wiu(R;) (i = 1,2), where the mobility
coefficient p; is comprised between 0 (fixed obstacle) and
1 (passive tracer). We also introduce the drag coefficients
a;: when a disk is pulled by an external force F in a qui-
escent fluid, it moves at a velocity R;(t) = «;F. Let us
now assume that the two disks would propel at a veloc-
ity vs(o)p when alone, and let us compute the swimming
speed and mobility coefficients from Egs. (4)-(5) for the
dumbbell.



The displacement of each disk results from the com-
petition between (i) self-propulsion, (ii) the advection by
the external flow u(®), (iii) the advection of the disk i by
the dipolar perturbation induced by the motion of the
disk j, ud(R;|R;,0;), and (iv) the inextensibility con-
straint, Ry — R; = ap. At leading order in b;/a, these
contributions yield the following equations of motion for
the "head" (i = 2) and the "tail" (¢ = 1) of the swimmer:

Rl = ’US(O)p + ul[u(o) (Rl) + ud(Rl\RQ, 0'2)] + alT,(G)
Ry = o{”p+ pu® (Ry) + u'(Ro|Ry, 01)] — 2T, (7)

where the tension T ensures the inextensibility condi-
tion, p - (R2 — Ry) = 0. Defining the center of drag of
the swimmer as R = (a1 R+ a2Rq)/ (01 +a2), Egs. (6)-
(7) are readily recast into the form of Eqgs. (4)-(5) with a
dumbbell velocity and mobility coefficients given at lead-
ing order by vs = v{” + O((b;/a)?), 1 = aspr (1—72) +
arp2(l =), g = aopa(1+72) + arpz(l+7) and v =
[(12 + p172) = (1 + p2m1)]/a, where y; = b7 (p; — 1) /a?.
We first see that the translational mobility coefficients,
1, depend only on the anisotropy of the swimmer, and
are independent of its geometrical polarity (they remain
unchanged upon a 1 < 2 permutation). In addition,
as | < gL, a non-swimming dumbbell making a finite
angle with a uniform flow field would drift at a finite
angle from the flow direction. We also obtain that in-
deed v # 0 for polar swimmers. Since the p;’s are de-
creasing functions of the particle radius, v is negative
for large-head swimmers (ba > by), and positive other-
wise. From Eq. (5) we thus get that in a uniform flow,
large-head swimmers would reorient against the flow and
thus self-propel upstream. In contrast, large-tail swim-
mers (by > by) would swim downstream. These results
are to be contrasted with the dynamics in unbounded
fluids where, as discussed above, no such reorientation is
present. In confinement, v vanishes for apolar swimmers,
and the orientation of a symmetric dumbbell evolves ac-
cording to the Jeffrey’s orbits, Eq. (5), where v = 0 and
V' = afp2(1+71)+p1(1+92)]/2. Note that, since u is ir-
rotational, the orientation of an isotropic swimmer made
of a single disk is not coupled to the background flow. In
the rest of the paper we discard the conventional v’ con-
tribution to the orientational dynamics. It only yields
short-wavelength corrections to the large-scale descrip-
tion of polar-swimmers suspensions described below.

We now turn to the dynamics of a dilute population of
interacting swimmers in a quiescent fluid. We introduce
the one-point probability distribution function, ¥(r, p,t),
for swimmers with orientation p at position r and time
t. The dynamics of the active particles is defined by
Egs (4)-(5), with the fluid velocity field, u(r,t), result-
ing from the linear superposition of force dipoles induced
by each swimmer, u(r,t) = [dpdr’ ¥(r/,p,t)ul(r[r’,o’),
where 6’ = ovgp. Assuming that swimmers are subject
to translational and rotational diffusion, ¥(r, p,t) obeys
the continuity equation

¥ = -V (VR) — V- (Ip) + DV?T + DpV2 U, (8)

where R and p are defined by Eqs. (4)-(5), D and Dpg
are the translational and the rotational diffusion coeffi-
cients respectively, and V stands for the gradient on
the unitary circle. For simplicity, we neglect transla-
tional diffusion. Specifically, anticipating on our results,
we assume D < vZ/Dp, which is true for most biolog-
ical and artificial micro-size swimmers. Note that for
homogeneous suspensions, and due to the symmetry of
the dipolar coupling, the sum of all hydrodynamic inter-
actions vanishes: indeed when VU (r,p,t) = 0, we have
Jdr'ud(rr’,6’) = 0, and thus from Egs. (4)-(5) it fol-
lows that p = 0, and V- R = 0. The dynamics of an
homogeneous population, from Eq. (8), reduces thus to
the orientational diffusion of an isolated swimmer, and
homogeneous phases relax toward an isotropic state over
a time ~ Dgl.

We now investigate the dynamic response of the ho-
mogeneous and isotropic phase to spatial fluctuations
of the concentration and orientation of the active par-
ticles. The phase behavior is described in term of (i)
the concentration field, c¢(r,t) = [U(r,p,t)dp, (ii) the
local polarization, P(r,t) = 1 [p¥(r,p,t)dp, and (iii)
the local nematic-orientation tensor, Q(r,t) = % Jpp —
%I)\I/(r,p,t)dp. To establish their equation of motion,
we need to add a closure relation to Eq. (8). As we focus
on deviations from isotropic and homogeneous states, we
expand U linearly in its three first moments [17, 18]

1
‘I’(X,p,t) = %C(1+2papa +4pocp,BQozB)7 (9)

where the numerical coefficients are chosen so that ¢, P,
and Q are defined in a self-consistent fashion. Defin-
ing i = L(py +p1), and i = (p — po), and after some
elementary but tedious algebra, the three nonlinear equa-
tions of motion are inferred from Egs. (8)-(9) as

8tc = —Va [vsCPa + ﬂcua + ﬂcQaﬁu,@] ? (10)
Oy(cPy) = %uac —veugQpa — DrePa — VIga,  (11)

v
8t(cQa,6’) = §Cu’y(25'y(apﬁ) - 5a,(5’P'y) - 4DRCQaﬂ - V'yj'yaﬂ7

(12)
where the (potential) fluid velocity satisfies
Oaliq, = —00504 (cPy) , (13)

and where the expressions for the fluxes Z and J are
given in supplementary information.

Equations (10)-(13) fully describe the dynamics of
the isotropic phase. We investigate their linear sta-
bility with respect to plane-wave excitations of the
form (0c,dP,0Q)exp(ik - r — dwt), with k = kx.
At linear order, we can integrate Eq. (13) for the
fluid velocity, and recast the equations of motion
into a set of two uncoupled linear systems hav-
ing the form 0,(0P,,0Qz,) = Mpend(6Py, Q) and
0:(0¢, 6 Py, 0Qzz) = Mgplay (¢, 0Py, 0Qz). The first sys-
tem couples the transverse-polarization and the bend
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FIG. 2: Stability diagram of a nearly isotropic and homoge-
neous population of polar swimmers; Pe < 0 (resp. Pe > 0)
refers to large-head swimmers (resp. large-tail swimmers).

modes only. These modes are stable for all k, they cor-
respond to damped sound-waves. The associated disper-
sion relation is deduced from the eigenvalues of Mpepnq
as iw = 2(5Dp £ i\/—9D% + (kvs/2)?). In contrast,
long-range hydrodynamic interactions between swimmers
can destabilize the concentration (c), the longitudinal
polarization (P,) and the splay modes (Q.;). To con-
vey an intuitive description of this instability we intro-
duce the two governing dimensionless numbers. First,
Pe = vegovs/(2DR) is a Peclet number comparing the
rotational diffusion constant, Dg, to the rate of rotation
of a polar swimmer induced by a source dipole of mag-
nitude ocgus (co being the average concentration); large-
tail swimmers (resp. large-head swimmers) correspond to
Pe > 0 (resp. Pe < 0). The second dimensionless num-
ber, H = (iocyvs)/vs, compares the swimming speed, vs,
to the advection velocity induced by a source dipole of
magnitude ocovs. In the long-wave-length limit (k — 0),
the eigenfrequencies associated with the stability matrix
Mgp1ay then take the form

v? 1-HY\ ,
= —i—* 14
e “9Dg <1+Pe>k’ (14)
wp = —iDg (1 + Pe) 4+ O(k?), (15)
wq = —4iDg+ O(k?). (16)

At 0 order in k, the total number of swimmers be-
ing a conserved quantity we have w., = 0, and Mgplay
has only two non-trivial eigenvalues. Whereas rota-
tional diffusion always stabilizes the nematic orientation
(—iwg < 0), hydrodynamic interactions can in fact desta-
bilize the isotropic state. From Eq. (15), we see that
large-head swimmers with Pe < —1 experience a generic
instability: fluctuations of the local polarization are am-
plified when the rotation induced by the hydrodynamic
couplings overcome the diffusional relaxation of P, (see
Fig. 2).

Several comments are in order. First, although the
growth rate of the instability does not dependent on k,
the total polarization (k = 0) is not unstable. As dis-
cussed above, the sum of all the hydrodynamic interac-

tions cancels in this limit and no global directed flow
can emerge spontaneously from an isotropic suspension.
The instability shows however that groups of particles
swimming coherently along the same direction form at
all scales. Second, the generic nature of the instability
is specific to the dipolar symmetry of the hydrodynamic
interactions, and the polar shape of the particles, and
can be intuitively rationalized as follows. From Eq. (13)
we see that any finite wave-length perturbation of P,
along z results in a fluid flow in the opposite direction,
with amplitude ~ ocgvsd P,. Polar swimmers align with,
or against, the local flow direction depending on their
polarity. Large-head swimmers align along —u, thereby
increasing the initial perturbation of P and destabilizing
the isotropic state. Conversely, large-tail swimmers align
in the opposite direction and the local polarization re-
laxes to zero. As the reorientation rate of the swimmers
is set by the magnitude of the velocity only (and not by
the local strain-rate tensor), the growth (or relaxation)
rate of the polarization is independent of the wave vector.

This novel generic instability is qualitatively different
from the one observed in unbounded suspensions of push-
ers which, in contrast, is suppressed by confinement [5].
They differ in both the physical mechanisms at work and
the structure of the unstable modes (bend versus splay
modes). The only similarity is that in both systems the
generic instability is a genuine collective effect due to the
long-range nature of hydrodynamic interactions.

To investigate the stability of the active film when
Pe > —1, we need to consider the eigenfrequencies , and
the eigenmodes of Mplay up to O(k?). From Eq. (14)
we see that the combination of self-propulsion and rota-
tional diffusion yields an effective diffusive dynamics of
the suspension scaling as w, ~ (v2/Dgr)k?, as could have
been anticipated from the single swimmer problem [23].
However, hydrodynamic interactions result in a renor-
malization of this single-swimmer effect. These inter-
actions control both the magnitude and the sign of the
effective translational diffusion. In the regions (Pe > —1,
H >1) and (Pe < —1, H < 1), the effective diffusivity is
negative and thus slowly destabilizes the isotropic phase
(Fig. 2). The associated eigenmodes are now complex
superpositions of ¢, P,, and Q.;, and thus clusters of
aligned particles form and propel in a coherent fashion
(swarms), from a homogeneous film. Notably, both large-
head (-1 < Pe < 0) and large-tail (Pe > 0) swimmers
are prone to this second splay-destabilization mechanism.
In the other regions of Fig. 2, the effective diffusivity is
positive and concentration fluctuations are stable.

In summary we revisited in this paper the theoretical
description of populations of micro-swimmers when con-
fined between two rigid walls. We showed that active
particles interact hydrodynamically in generic manner,
which is independent of the microscopic details of their
propulsion mechanism and that, depending on their po-
larity, they may reorient in uniform flows instead of solely
flow gradients. Focusing on polar swimmers, we then
constructed a large scale hydrodynamic theory from a



minimal microscopic model (dumbbells). Our analysis
showed that the macroscopic orientational dynamics is
very different from the modified Leslie-Eriksen model of
active liquid crystals due to a difference in the symme-
try of the microscopic coupling between confined polar
particles and the fluid flow. It results in a novel phase
behavior for active films and, in particular, spontaneous

large-scale directed motion and swarming can emerge out
of isotropic populations of confined swimmers.
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