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Neutron matter presents a unique system for chiral effective field theory (EFT), because all
many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO).
We present the first complete N3LO calculation of the neutron matter energy. This includes the
subleading three-nucleon (3N) forces for the first time and all leading four-nucleon (4N) forces.
We find relatively large contributions from N3LO 3N forces. Our results provide constraints for
neutron-rich matter in astrophysics with controlled theoretical uncertainties.
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The physics of neutron matter ranges from universal
properties at low densities to the structure of extreme
neutron-rich nuclei and the densest matter we know to
exist in neutron stars. For these extreme conditions, con-
trolled calculations with theoretical error estimates are
essential. Chiral EFT provides such a systematic expan-
sion for nuclear forces [1]. This is particularly exciting
for neutron matter and neutron-rich systems, because all
three- and four-neutron forces are predicted to N3LO [2].

Neutron matter based on chiral EFT has been studied
using lattice simulations [3] at low densities, n . n0/10
(with saturation density n0 = 0.16 fm−3), and following
an in-medium chiral perturbation theory approach [4, 5],
where low-energy couplings are adjusted to empirical nu-
clear matter properties. In addition, the renormalization
group (RG) has been used to evolve chiral EFT interac-
tions to low momenta [6], which has enabled perturbative
calculations for nucleonic matter [2, 7]. While these con-
strain the properties of neutron-rich matter to a much
higher degree than is reflected in neutron star model-
ing [8], the dominant uncertainties are due to 3N forces,
which were included only to N2LO. A consistent inclusion
of higher-order many-body forces is therefore key.

Here we present the first calculations at nuclear den-
sities based directly on chiral EFT interactions without
RG evolution. To this end, we have studied the per-
turbative convergence of chiral two-nucleon (NN) poten-
tials for neutron matter in detail, and found that the
available N2LO and N3LO potentials with lower cutoffs
Λ = 450− 500MeV are perturbative. This is supported
by small Weinberg eigenvalues at low energies indicat-
ing the perturbative convergence in the particle-particle
channel [6]. In neutron matter, it comes as a result of
effective range effects [9], which weaken NN interactions
at higher momenta, combined with weaker tensor forces
among neutrons, and with limited phase space at finite
density due to Pauli blocking [10].

At the NN level we use the N2LO and N3LO po-
tentials developed by Epelbaum, Glöckle and Meißner
(EGM) [11] with Λ/Λ̃ = 450/500 and 450/700MeV (Λ/Λ̃
denotes the cutoff in the Lippmann-Schwinger equation

and in the two-pion-exchange spectral-function regular-
ization, respectively). We also use the Λ = 500MeV
N3LO NN potential of Entem and Machleidt (EM) [12],
which is most commonly used in nuclear structure calcu-
lations. The larger Λ = 550− 600MeV NN potentials of
EGM and EM have been found to be nonperturbative [13]
and are therefore not included. Moreover, the LO NN
contact couplings in the 600/600 and 600/700 EGM po-
tentials break Wigner symmetry perturbatively (at the
interaction level), with a repulsive spin-independent CS
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FIG. 1. (Color online) Neutron matter energy per particle
as a function of density including NN, 3N and 4N forces at
N3LO. The three overlapping bands are labeled by the differ-
ent NN potentials and include uncertainty estimates due to
the many-body calculation, the low-energy ci constants and
by varying the 3N/4N cutoffs (see text for details). For com-
parison, results are shown at low densities (see also the inset)
from NLO lattice [3] and Quantum Monte Carlo (QMC) sim-
ulations [22], and at nuclear densities from variational (APR;
the different points are with/without boost corrections) [23]
and Auxiliary Field Diffusion MC calculations (GCR) [24]
based on adjusted nuclear force models.
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and an unnaturally large spin-dependent CT ∼ CS , lead-
ing to unexpectedly large CT -dependent 3N forces.
In this Letter, we include for the first time all N3LO 3N

and 4N forces, which have been derived only recently [14–
17], in addition to the N2LO 3N forces. Figure 1 shows
our complete N3LO calculation of the neutron matter
energy as our main result, where the bands include esti-
mates of the theoretical uncertainties due to the many-
body calculation and in the many-body forces.
For neutrons, only the two-pion-exchange 3N forces

contribute at N2LO [2]. For the corresponding low-
energy constants c1 and c3, we take the range of val-
ues from a high-order analysis [18], at N2LO: c1 =
−(0.37 − 0.81)GeV−1 and c3 = −(2.71 − 3.40)GeV−1

(which includes the ci values in the EGM and EM NN
potentials), and when the N2LO 3N forces are included
in an N3LO calculation: c1 = −(0.75− 1.13)GeV−1 and
c3 = −(4.77 − 5.51)GeV−1. It has been shown [2] that
the N2LO 3N force contributions in neutron matter can
be to a good approximation calculated at the Hartree-
Fock level. In this first calculation, we therefore evaluate
the N3LO 3N and 4N force contributions to the energy
per particle E/N at the Hartree-Fock level. The A-body
contributions are then given by

E

N
=

1

n

1

A!

∑

σ1,...,σA

∫
dk1

(2π)3
· · ·

∫
dkA

(2π)3
f2
R nk1

· · · nkA

× 〈 1 . . . A | AA

A∑

i1 6=... 6=iA=1

VA(i1, . . . , iA) | 1 . . . A 〉 , (1)

with short-hand notation i ≡ kiσi. AA denotes the A-
body antisymmetrizer and nki

= θ(kF − ki) the Fermi-
Dirac distributions at zero temperature. We use a
Jacobi-momenta regulator; in terms of ki given by fR =
exp[−((k21+. . .+k2A−k1 · k2−. . .−kA−1 ·kA)/(AΛ

2))nexp ]
with nexp = 4 and 3N/4N cutoff Λ = 2 − 2.5 fm−1. For
the nucleon and pion mass, we use m = 938.92MeV and
mπ = 138.04MeV, and for the axial coupling gA = 1.29
and the pion decay constant fπ = 92.4MeV.
Chiral 3N forces at N3LO can be grouped into

V N3LO
3N = V 2π + V 2π-1π + V ring + V 2π-cont + V 1/m , (2)

where we take the long-range parts, the subleading
two-pion-exchange, the two-pion–one-pion-exchange and
the pion-ring 3N forces, from Ref. [15], and the short-
range parts, the two-pion-exchange–contact and relativis-
tic 1/m-corrections 3N forces from Ref. [16]. In Fig. 2,
we give the individual Hartree-Fock contributions to the
neutron matter energy. The evaluation is aided because
parts of the different 3N force topologies vanish for neu-
trons, and the results have been checked by two indepen-
dent calculations. The details of the calculation will be
presented in a future paper. At the Hartree-Fock level,
the 3N/4N contributions change by < 5% if the cutoff is

taken to infinity (i.e., fR = 1), but we will also include
N2LO 3N forces beyond Hartree-Fock. This requires a
consistently used regulator. Estimates of the theoretical
uncertainty are provided by varying the 3N/4N cutoff.

The two-pion-exchange 3N forces at N3LO can be
largely written as shifts of the low-energy constants,
δc1 = −0.13GeV−1 and δc3 = 0.89GeV−1 [15] of the
N2LO 3N forces, plus a smaller contribution. The result-
ing energy of about −1.5MeV per particle at saturation
density n0 in Fig. 2 is ∼ 1/3 of the N2LO 3N energy, as
expected based on the chiral EFT power counting. In
contrast, the two-pion–one-pion-exchange 3N force con-
tributions, which include 14 diagrams, are relatively large
with −3.6MeV per particle at saturation density. Of sim-
ilar, but opposite size are the pion-ring 3N force contri-
butions, with +3.3MeV per particle at n0. The shorter-
range parts of N3LO 3N forces depend on the momentum-
independent NN contacts, CT and CS , which we take
consistently from the N3LO EM/EGM potential used.
The contributions from the two-pion-exchange–contact
3N forces include 11 diagrams and depend only on CT .
The resulting energy ranges from −2.8 to +1.3MeV at n0

depending on the NN potential used. These larger 3N re-
sults at N3LO are consistent with contributions from the
large ci constants at N

4LO exactly in these three topolo-
gies [18]. This shows that higher-order many-body forces
still need to be investigated and that a chiral EFT with
explicit ∆ excitations may be more efficient, since this
would capture these effects already at N3LO. Finally, the
relativistic-corrections 3N forces depend also on β̄8 and
β̄9 [16] and contribute at the few hundred keV level.

The 4N force contributions in Fig. 2 are an order of
magnitude smaller than those from the N3LO 3N forces
and of similar size as the 3N relativistic corrections. We
follow the 4N force notation V a through V n of Ref. [17],
and include the direct and all 23 exchange terms. Due
to the spin-isospin structure, only 3 topologies contribute
to neutron matter: the three-pion-exchange 4N forces V a

and V e, and the pion-pion-interaction 4N forces V f . The
4N forces V k and V n involving the contact CT vanish in
neutron matter due to their spin structure. We find a to-
tal 4N force contribution of −174±10 keV per particle at
n0. The V

e and V f energies largely cancel [19], and their
sum agrees with the very small ∼ −20 keV per particle
at n0 of Ref. [20], which considered these two parts.

Since diagrams beyond Hartree-Fock involving NN in-
teractions and N2LO 3N forces (in particular with the
larger ci at N3LO 3N and without RG evolution) pro-
vide non-negligible contributions [2], we include all such
diagrams to second order, as well as particle-particle dia-
grams to third order, which is technically possible based
on Ref. [7]. In addition to using NN potentials with dif-
ferent cutoffs and varying the 3N/4N cutoffs, we include
estimates of the theoretical uncertainties of the ci con-
stants and in the convergence of the many-body calcu-
lation. The latter is probed by studying the sensitiv-
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FIG. 2. (Color online) Energy per particle versus density for all individual N3LO 3N and 4N force contributions to neutron
matter at the Hartree-Fock level. The bands are obtained by varying the 3N/4N cutoff Λ = 2 − 2.5 fm−1. For the two-pion-
exchange–contact and the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT

and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram illustrates the 3N/4N force topology.

ity of the energy to the single-particle spectrum used.
We find that the energy changes from second to third
order, employing a free or Hartree-Fock spectrum, by
0.8, 0.4, 1.3MeV (1.4, 0.9, 2.7MeV) per particle at n0/2
(n0) for the EGM 450/500, 450/700, EM 500 N3LO po-
tentials, respectively. The results, which include all these
uncertainties, are displayed by the bands in Fig. 1. Un-
derstanding the cutoff dependence and developing im-
proved power counting schemes remain important open
problems in chiral EFT [21]. For the neutron matter en-
ergy at n0, our first complete N3LO calculation yields
14.1 − 21.0MeV per particle. If we were to omit the
results based on the EM 500 N3LO potential, as it con-
verges slowest at n0, the range would be 14.1−18.4MeV.

As we find relatively large contributions from N3LO
3N forces, it is important to study the EFT convergence
from N2LO to N3LO. This is shown in Fig. 3 for the
EGM potentials (N2LO is not available for EM), where
the N3LO results are found to overlap with the N2LO
band across a ±1.5MeV range around 17MeV at satura-
tion density. As expected from the net-attractive N3LO
3N contributions in Fig. 2, the N3LO band yields lower
energies. For the N2LO band, we have estimated the the-
oretical uncertainties in the same way, and the neutron
matter energy ranges from 15.5 − 21.4MeV per particle

at n0. The theoretical uncertainty is reduced from N2LO
to N3LO to 14.1 − 18.4MeV, but not by a factor ∼ 1/3
based on the power counting estimate. This reflects the
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FIG. 3. (Color online) Neutron matter energy per particle as
a function of density at N2LO (upper/blue band that extends
to the dashed line) and N3LO (lower/red band). The bands
are based on the EGM NN potentials and include uncertainty
estimates as in Fig. 1.
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FIG. 4. (Color online) Range for the symmetry energy Sv

and its density dependence L obtained at N3LO (this work)
versus including 3N forces at N2LO (Hebeler et al. [8]). For
comparison [25], we show constraints obtained from energy-
density functionals for nuclear masses (Kortelainen et al. [26])
and from the 208Pb dipole polarizability (Tamii et al. [27]).

large ci 3N contributions at N4LO, and is similar to the
convergence pattern observed in chiral NN potentials [1].

The neutron matter energy in Fig. 1 is in very good
agreement with NLO lattice results [3] and Quantum
Monte Carlo simulations [22] at very low densities (see
also the inset) and approximately reproduces the scaling

∼ 0.5
3k2

F

10m , which we attribute to effective-range effects
combined with low cutoffs [9]. At nuclear densities, we
compare our N3LO results with variational calculations
based on phenomenological potentials (APR) [23], which
are within the N3LO band, but do not provide theoret-
ical uncertainties. In addition, we compare the density
dependence with results from Auxiliary Field Diffusion
MC calculations (GCR) [24] based on nuclear force mod-
els adjusted to an energy difference of 32MeV between
neutron matter and the empirical saturation point. The
density dependence is similar to the N3LO band, but the
GCR results are higher below 0.05 fm−3.

The N3LO band provides key constraints for the nu-
clear equation of state and for astrophysics. Figure 4
shows, following Ref. [25], the allowed range for the
symmetry energy Sv and its density dependence L =
3n0∂nSv(n0) (for details on the determination of Sv

and L see Ref. [8]). Compared to the results from
RG-evolved chiral interactions with 3N forces at N2LO
only [8], we find the same correlation (with the same
slope), but not as tight due to the additional density de-
pendences at N3LO. The N3LO ranges for Sv and L are
Sv = 28.9 − 34.9MeV and L = 43.0 − 66.6MeV. The
two neutron-matter bands in Fig. 4 are complementary,
because the RG evolution in Hebeler et al. [8] improves

the many-body convergence, while the band presented in
this work is the first consistent N3LO calculation. The
predicted N3LO range, as well as that of Hebeler et al. [8],
are in agreement with constraints obtained from energy-
density functionals for nuclear masses [26] and from the
208Pb dipole polarizability [27]. In the future, the N3LO
band can be narrowed further by a higher-order many-
body calculation with N3LO 3N forces and by taking into
account ∆ excitations (explicitly or through large ci con-
tributions at N4LO [18]). Combined with the heaviest
2M⊙ neutron star [28] and a general extension to high
densities [8], our N3LO energy band leads to a radius
range of R = 9.7 − 13.9 km for a typical 1.4M⊙ neu-
tron star, in remarkable agreement with Ref. [8]. For an
alternative determination using in-medium chiral pertur-
bation theory for all densities see Ref. [5].

We have presented the first complete N3LO calculation
of the neutron matter energy, including NN, 3N and 4N
forces, with the first application of N3LO 3N forces to
many-body systems. The significant contributions from
N3LO 3N forces show that their inclusion will also be
very important for nuclear structure and reactions. Our
results provide constraints for the nuclear equation of
state and for neutron-rich matter in astrophysics, and
highlight the exciting role neutron matter and neutron-
rich systems play in chiral EFT, where all many-neutron
forces are predicted. The large contributions from N3LO
3N forces signal the importance of ∆ contributions at
nuclear densities.
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