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Chirality, causality, and fluctuation-dissipation theorems in non-equilibrium steady

states
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Edges of some quantum Hall liquids and a number of other systems exhibit chiral transport:
excitations can propagate in one direction only, e.g., clockwise. We derive a family of fluctuation-
dissipation relations in non-equilibrium steady states of such chiral systems. The theorems connect
nonlinear response with fluctuations far from thermal equilibrium and hold only in case of chiral
transport. They can be used to test chiral or non-chiral character of the system.

PACS numbers: 05.70.Ln, 05.40.Ca, 73.43.Cd

According to the causality principle, past events in-
fluence the future but the future has no effect on the
past. This principle has no general counterpart in terms
of the spatial separation of events: consequences of some
events can be felt in every point after a sufficient wait
time. A spatial version of the causality principle emerges
in low-energy effective theories of some many-body sys-
tems. The best known example is the integer quantum
Hall effect (QHE): low-energy excitations are confined to
the edges and can propagate only clockwise or counter-
clockwise [1]. This can lead to a situation in which earlier
events affect only those future events that occur “down-
stream”. Similar chiral transport is possible in a number
of other systems: some fractional quantum Hall liquids
[1], interfaces of topological insulators, superconductors
and ferromagnets [2, 3], surface states in 3D QHE and so
on. The simplest example comes from the statistical me-
chanics models of traffic [4]: chiral transport is possible
on a network of one-way roads as long as no traffic jams
form.

In this paper we explore consequences of the extended
causality principle in chiral systems. Causality is crucial
for linear response theory. One of its celebrated results
is the fluctuation-dissipation theorem (FDT). We show
that a family of generalized FDTs holds in chiral sys-
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FIG. 1: (color online) r reservoirs are connected to subsys-
tem S by chiral edge channels 0, 1, . . . , r. The propagation
direction along each edge channel is shown with an arrow.
Each reservoir is at equilibrium with its own temperature and
chemical potential. Panel (b) illustrates a quantum Hall bar.
Transport occurs along chiral edges and in quantum point
contacts. Dotted lines show tunneling between edges in the
point contacts.

tems. While the usual FDT applies in thermal equilib-
rium only, our theorems are also valid in non-equilibrium
steady states.

The simplest relation [5–7] of such sort was derived for
the exactly-solvable chiral Luttinger liquid model with a
single impurity. We have recently found an FDT-type
relation between the current noise and nonlinear con-
ductance in a general chiral system in a non-equilibrium
steady state in a three-terminal geometry [8]. In this
paper we prove a much more general result: we express
nonlinear responses of the currents of various conserved
quantities, such as the electric current and thermal cur-
rent, in terms of the second and higher order cumulants
of the statistical distributions of the currents in a non-
equilibrium steady state in a multi-terminal system with
an arbitrary number of terminals. The generalization is
achieved due to a much simpler approach. The result for
the chiral Luttinger liquid model follows from its tech-
nically difficult exact solution [7]. A more general result
[8] was obtained with a simpler but still rather subtle
method, generalizing the equilibrium Kubo formalism.
In this paper we use a completely different trick based
on fluctuation relations [9, 10].

The fluctuation theorem has been used in Ref. 11 to
derive universal relations for nonlinear transport coeffi-
cients in the absence of time-reversal symmetry (see also
Refs. [12–18]). The results of Ref. [11] hold irrespec-
tive of chirality. Our results apply to chiral systems only
and can thus be used to test transport chirality exper-
imentally. This problem is of great interest [19–23] for
the QHE physics, in particular, at the filling factor 5/2.
Indeed, the question of chirality of the edge transport
is relevant for the current search of non-Abelian anyons
at that filling factor [19, 21]. Even in better understood
QHE states, such as the Laughlin series, there is no com-
plete theory of edge transport. In particular, the chiral
Luttinger liquid model [1] faces difficulties (for a review
of recent experiments see Ref. 24). Our theorems provide
a way to test its basic assumption of chiral edge transport
[8, 22] and touch upon the problem of nonlinear transport
in QHE [25, 26].

Non-equilibrium fluctuation-dissipation relations have



2

been derived in various classical systems [27–38]. In con-
trast to Refs. 27–38, we consider chiral transport and fo-
cus on topological quantum systems in some of which chi-
ral transport has received experimental support [20, 21].
We begin with a proof of a relation between the non-

linear conductance and the current noise (second order
current correlation function) and then generalize it for
higher order correlation functions.
The system (Fig. 1) consists of a central subsystem S

and r reservoirs which we number with k = 1, . . . , r. We
assume that the reservoirs are connected to S by chiral
edge channels as shown in Fig. 1. Subsystem S may but
does not have to be chiral (see an illustration in Fig. 1b).
There is no bulk transport outside system S and reser-
voirs. Chiral edges 0 and r are fully absorbed by reser-
voirs 1 and r respectively. In the case of a QHE system,
this means that the resistance of the reservoirs is much
lower than the Hall resistance of the QHE bar. We do not
make assumptions about the strength of the interaction
between the remaining reservoirs 2, . . . , r − 1 and chiral
edges. We assume that transport along edge 0 is uncor-
related with what happens on the other chiral edges in
Fig. 1, i. e., all forces are short-ranged. For a QHE bar
this implies screening of the long-range Coulomb interac-
tion by a gate whose distance from the 2D electron gas is
shorter than the distance between edge 0 and the other
edges. Edge 0 must also be far enough from other edges
to prevent transport into them through the bulk from
edge 0 [39, 40]. The absence of such leakage current can
be verified by testing the quantization of the Hall con-
ductance after all side reservoirs 2, . . . , r − 1 are discon-
nected. Each reservoir is maintained at its temperature
Tk = 1/βk and chemical potential µk. Unless all temper-
atures and all chemical potentials are the same, the sys-
tem is in a nonequilibrium steady state. In order for the
chiral description to hold, Tk and µk must be lower than
the QHE gap. Let the electric current Ii and heat cur-
rent Ji flow into reservoir i. Our main result is that the
zero-frequency cross-noises S1i = limω→0〈I1(ω)Ii(−ω)〉
and Sh

1i = limω→0〈J1(ω)Ji(−ω)〉, i 6= 1, r, are related to
the nonlinear responses of Ii and Ji to the electrostatic
potential V1 and temperature T1:

S1i = −T1
∂Ii
∂V1

, (1)

Sh
1i = −(T1)

2 ∂Ji
∂T1

. (2)

The Boltzmann constant kB is set to 1 throughout the
paper.
Our method is connected with the approach of Refs.

[41, 42]. We consider the following protocol: Initially,
subsystem S and the reservoirs are decoupled. An in-
teraction V(t) that allows particle and energy exchange
with the reservoirs is turned on at times 0 ≤ t ≤ T . The

interaction is turned off at t ≥ T . At t ≤ 0, reservoir i
is at equilibrium with an inverse temperature βi = 1/Ti

and a chemical potential µi = qVi, where q is the charge
of a charge carrier and Vi the electric potential. We use
only one set of chemical potentials and thus assume that
only one carrier type is present. The initial state of fi-
nite subsystem S is irrelevant. It is convenient to regroup
S (and the rest of grey area in Fig. 1) with one of the
reservoirs[41], for example, the r-th reservoir. The inter-
action V(t) becomes a constant V0 when fully turned on
during τ ≤ t ≤ T − τ . We assume that τ ≪ T and T is
much longer than the relaxation time so that the system
remains in a steady state during most of the time interval
T .
The above process is called a forward process in the

formalism of fluctuation relations. We also need to study
a backward process which can be described as a forward
process in the time-reversed twin system with the op-
posite chirality (i.e., the directions of all arrows must
be reversed in Fig. 1; see Supplementary material for a
detailed discussion). We assume that the initial temper-
atures and chemical potentials of all reservoirs are the
same in the forward and backward processes.
Consider now the changes ∆Ni = Ni(t = T )−Ni(t =

0) in the particle number Ni in each reservoir and the
changes ∆Ei = Ei(t = T ) − Ei(t = 0) in the energy Ei

in each reservoir. The total energy and particle number
are conserved, so that

∑

i∆Ei =
∑

i ∆Ni = 0. We in-
troduce the joint probability distribution of the particle
number and energy changes P [∆E,∆N;±], where the
vector ∆E = {∆Ei}, ∆N = {∆Ni}, and the “+” or “-”
sign in the last argument of P refers to the forward or
backward process respectively. According to the fluctua-
tion relation (a derivation can be found in Ref. [41] and
Supplementary material)

P [∆E,∆N; +]

P [−∆E,−∆N;−]
=

∏

i

eβi(∆Ei−µi∆Ni). (3)

Given a distribution P [∆E,∆N; ν] with ν = ±, we are
able to calculate the heat currents Jν

i = limT →∞〈(∆Ei−
µi∆Ni)〉ν/T and their correlation functions, as well as
the electric/particle currents Iνi = limT →∞〈q∆Ni〉ν/T
and their correlation functions. The triangular brackets
mean taking average with respect to P [∆E,∆N; ν]. The
limit T → ∞ is taken so that the steady-state quanti-
ties are obtained. It is convenient to define a cumulant
generating function

Q(x,y,β,µ; ν) = lim
T →∞

1

T
ln

{
∫

∏

i<r

(d∆Eid∆Ni)

× e−
∑

i
xi∆Ei−

∑
i
yi∆NiP [∆E,∆N;β,µ; ν]

}

, (4)

where the vectors x = {xi}, y = {yi}, β = {βi}, and
µ = {µi}. The µ-dependence of Q cannot be reduced
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to a dependence on the differences µi − µj even in the
QHE context because of the screening gate. Since P is
normalized, we have Q(0,0,β,µ; ν) = 0. The currents
and their correlation functions can be obtained by taking
derivatives of Q(x,y,β,µ; ν) over xi or yi and then set-
ting x = y = 0. The n-th order heat current correlation
functions

C
h(n),ν
ij···k =(−1)n[∂xi

− µi∂yi
][∂xj

− µj∂yj
]

· · · [∂xk
− µk∂yk

]Q(0,0,β,µ; ν), (5)

and the n-th order electric current correlation functions

C
(n),ν
ij···k = (−q)n∂yi

∂yj
· · · ∂yk

Q(0,0,β,µ; ν). (6)

At n = 1, C
h(1),ν
i and C

(1),ν
i are just the heat current

Jν
i and the electric current Iνi . The second-order correla-

tion functions are the low-frequency noises Sh,ν
ij ≡ C

h(2),ν
ij

and Sν
ij ≡ C

(2),ν
ij [this definition differs by a factor of 2

from Ref. 8]. Higher-order correlation functions have
also been studied experimentally [43]. The fluctuation
relation (3) leads to a symmetry of the generating func-
tion

Q(x,y,β,µ; +) = Q(β − x, ξ − y,β,µ;−), (7)

with ξ = {−βiµi}.
As discussed above, edge 0 (Fig. 1) is independent

of the remaining edges. In other words, our protocol re-
sults in two statistically independent transport processes:
charge and energy transfer along the lower edge 0 and
along the remaining edges in the upper part of the sys-
tem. This means that the distribution function can be
rewritten as

P [∆E,∆N; ν] =

∫

d∆E′
1d∆N ′

1 P1[∆E′
1,∆N ′

1; ν]P2[∆E1

−∆E′
1,∆N1 −∆N ′

1,∆E2, . . .∆Er−1,∆N1, . . . ,∆Nr−1; ν],
(8)

where P1[∆E′
1,∆N ′

1; ν] is the probability to trans-
port ∆E′

1 energy and ∆N ′
1 particles into reservoir

1 along the lower edge (edge 0 in Fig. 1), and
P2[∆E′′

1 ,∆N ′′
1 , {∆Es}, {∆Ns}; ν] is the probability to

transport ∆E′′
1 energy and ∆N ′′

1 particles along edge 1
and change the energy and particle numbers in reservoirs
2, . . . , r − 1 by (∆Ei,∆Ni), 1 < i < r [Remember that
∆Er and ∆Nr are not independent variables because of
conservation laws]. Negative ∆E′

1, ∆E′′
1 , ∆N ′

1 or ∆N ′′
1

mean the energy and/or particle loss by reservoir 1. We
now discuss the dependences of P1 and P2 on the temper-
atures βi and chemical potentials µi. In the setup with
the “+” chirality, energy and particles on the lower edge
flow out of reservoir r and into reservoir 1. Due to the ex-
tended causality principle, the distribution of ∆E′

1,∆N ′
1

depends only on βr and µr. Meanwhile, reservoir r re-
ceives energy and particles from the upper part of the

system but does not provide any feedback, so the trans-
port in the upper part does not depend on βr and µr.
Hence, P1 only depends on βr and µr while P2 does not
depend on βr and µr. In the setup with the opposite “−”
chirality, the same argument shows that P1 only depends
on β1 and µ1 while P2 does not depend on β1 and µ1.
In terms of the cumulant generating function, Eq. (8)

means that Q(x,y,β,µ; ν) = Q1 + Q2 splits into two
terms Q1 and Q2, corresponding to P1 and P2 respec-
tively:

Q1(x,y,β,µ; ν) = lim
T →∞

1

T
ln

{
∫

d∆E′
1d∆N ′

1

×e−(x1−xr)∆E′

1
−(y1−yr)∆N ′

1P1[∆E′
1,∆N ′

1;β,µ; ν]

}

; (9)

Q2(x,y,β,µ; ν) = lim
T →∞

1

T
ln

{
∫

d∆E′′
1 d∆N ′′

1

∏

1<i<r

d∆Eid∆Ni exp(−x1∆E′′
1 −

∑

1<i<r

xi∆Ei − xrδEr)

× exp(−y1∆N ′′
1 −

∑

1<i<r

yi∆Ni − yrδNr)

×P2[∆E′′
1 ,∆N ′′

1 , {∆Er>i>1}, {∆Nr>i>1};β,µ; ν]

}

,(10)

where we used the relations
∑

∆Ei =
∑

∆Ni = 0 and
defined δEr = −∆E′′

1 −
∑

1<i<r ∆Ei, δNr = −∆N ′′
1 −

∑

1<i<r ∆Ni. The chirality-induced causality means that
Q1(ν = +) depends only on βr and µr while Q2(ν = +)
does not depend on βr and µr. Q1(ν = −) depends only
on β1 and µ1 and Q2(ν = −) does not depend on β1 and
µ1.
We are now ready to prove the steady-state FDT for

chiral systems. Let us start with the particle transport.
We apply the differential operator D̂i = Dyi

− TiDµi
to

both sides of Eq. (7). Dyi
andDµi

stay for full derivatives
over the respective variables. We obtain

(∂yi
− Ti∂µi

)Q(x,y,β,µ; +) = −Ti∂µi
Q(β − x, ξ − y,β,µ;−)

(11)

We emphasize that the partial derivative with respect
to µi on the right hand side is taken at a fixed ξ. The
expression ξi = −βiµi should be substituted after the dif-
ferentiation. This reflects the difference of the operators
D and ∂. We now apply the differential operator D̂j on
the two sides of Eqs. (11) and set x = y = 0 at the end.
In terms of the correlation functions (9), one finds

Tj

∂I+i
∂Vj

+ Ti

∂I+j
∂Vi

= −S+
ij + q2TiTj∂µi

∂µj
Q(β, ξ,β,µ;−).

(12)
In order to derive Eq. (12) we use the iden-
tity ∂µi

∂µj
Q(0,0,β,µ; +) = 0 which follows from
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Q(0,0,β,µ; ν) = 0. Note that the last term in Eq. (12)
is defined for a system with the “−” chirality, whereas
all other terms refer to the “+” chirality.

In a chiral system the last term in Eq. (12) is zero at
i = 1 < j ≤ r. This can be seen by writing the partial
derivative ∂µ1

∂µj
Q(x = β,y = ξ,β,µ;−) as the sum of

the derivatives of Q1 and Q2. In the system with the
“−” chirality, Q1 depends only on µ1 while Q2 does not
depend on µ1 before we make the substitution x → β

and y → ξ. Thus, the partial derivatives ∂µ1
∂µj

Q1 and
∂µ1

∂µj
Q2 are both zero. Moreover, if 1 < j < r then the

first term of Eq. (12) ∂I+1 /∂µj is also zero since I+1 only
depends on β1,r and µ1,r in the system with the “+” chi-
rality. Hence in systems with the “+” chirality, Eq. (12)
simplifies to Eq. (1). This is our main result: The cross
noise between the currents in reservoirs 1 and j is con-
nected to the response of the current in reservoir j to the
voltage in reservoir 1 regardless of the non-equilibrium
nature of the system. If j = r then the term ∂I1/∂Vr

is not zero. Instead, it equals the conductance G in the
two-terminal setup with only two reservoirs 1 and r. This
is the case since ∂I1/Vr is solely determined by edge 0
and hence does not change if all reservoirs 2, 3, . . . , r − 1
are removed. Thus, at j = r there is an additional con-
tribution GTr on the left hand side of Eq. (1). In a QHE
system with the filling factor ν, G = νe2/h.

Similar results can be obtained for heat currents and
noises after one applies the differential operators D̂h

j =

Dxj
−µjDyj

+Dβj
and D̂h

1 on both sides of Eq. (7). For
the systems with the “+” chirality and j 6= 1, r, we derive
Eq. (2) with this trick. For j = r, there is an additional
term ∂J1/∂βr = −(Tr)

2∂J1/∂Tr on the right hand side of
Eq. (2). In QHE, the physical meaning of the additional
contribution ∂J1/∂Tr is the thermal Hall conductance of
a two-terminal Hall bar, equal to κπ2Tr/3h, where κ is
universal.

We stress that all above response functions are non-
linear responses in non-equilibrium steady states. The
FDTs (1) and (2) hold for all chiral systems, as long as
Ti and Vi are smaller than the energy gap in the bulk. For
non-chiral systems, such as QHE systems with charged
or neutral counter-propagating modes at the edges, the
last term in Eq. (12) is nonzero in non-equilibrium states
and the theorem does not apply. One microscopic mech-
anism of FDT breaking in non-chiral systems involves en-
ergy transport by ‘upstream’ modes from region S (Fig.
1) to reservoir 1 along edge 1. Local heating at the hot
spot, where edge 1 enters reservoir 1, affects the noise
of the current, emitted from reservoir 1, as well as the
cross-noises S1i.

Eqs. (1,2) differ from the related results of Refs 7, 8.
In the case of Ref. 7 this reflects a different geometry.
Ref. 8 considers a version of Fig. 1 with r = 3 and
Tr = T1 (Fig. 1b). We verify below that the result of
Ref. 8 can be derived from Eq. (1) with r = 3. Charge

conservation implies that for low-frequency components
of the electric currents I3 = −I1 − I2. Hence, S33 =
S11 + S22 + 2S12, where Sii denotes the auto-correlation
noise and S12 is the cross-noise (1). Since the edges,
connected to reservoir 1, are always in equilibrium with
the temperature T1 = Tr, we find S11 = 2GT1 from the
equilibrium Nyquist formula [remember a missing factor
of 2 in our definition of the noise]. Then from the chiral-
system FDT (1) we get

S33 = S22 − 2T1
∂I2
∂V1

+ 2GT1, (13)

in agreement with Ref. 8. Certainly, the results of the
present work go well beyond Refs. 7, 8: we cover multi-
terminal geometries, thermal currents and a family of
FDT’s for higher-order correlation functions which we
derive below.
The strategy of their derivation is the same as above.

We apply D̂i on both sides of Eq. (7) m times and obtain

D̂i · · · D̂jD̂kQ(0,0,β,µ; +) =

(−1)mTiTj · · ·Tk∂µi
· · · ∂µj

∂µk
Q(β, ξ,β,µ;−). (14)

We set m ≥ 2, k = 1 and j 6= 1, r. The right hand side
vanishes due to chirality. The left hand side expresses
as a combination of derivatives of correlation functions.
It simplifies dramatically after we combine Eqs. (14) for
all m ≤ n. Specifically, one can prove by induction the
following FDT:

C
(n),+
i···j1 +Tj

∂C
(n−1),+

i···ĵ1

∂Vj

+T1

∂C
(n−1),+

i···j1̂

∂V1
+TjT1

∂2C
(n−2),+

i···ĵ1̂

∂Vj∂V1
= 0,

(15)
where a hat above an index means that the particular
index is absent in the index set (but does not mean that
its value is absent in the set since we do not exclude a
situation with two or more identical indexes). To derive
relations between heat current correlation functions and
their response functions, we apply the differential oper-
ator D̂h

i multiple times on both sides of Eq. (7). We
obtain

C
h(n)
i···j1+(Tj)

2
∂C

h(n−1)

i···ĵ1

∂Tj

+(T1)
2
∂C

h(n−1)

i···j1̂

∂T1
+(TjT1)

2
∂2C

h(n−2)

i···ĵ1̂

∂Tj∂T1
= 0.

(16)
Eqs. (1,2) are special cases of (15) and (16).
In conclusion, we established a family of fluctuation-

dissipation theorems for charge and heat transport in
chiral systems in nonequilibrium steady states. The ar-
gument combines the formalism of fluctuation relations
with the extended causality from chirality. Our results do
not hold in nonchiral systems away from equilibrium and
can thus be used to probe the chiral character of charge
and energy transport. This question is of significant cur-
rent interest [19, 21–23] in the QHE physics and is rele-
vant in other fields, such as transport in heterostructures
of topological insulators.
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