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By analysis and simulation we demonstrate two methods for achieving complete orientational
alignment of a set of identical, asymmetric colloidal objects dispersed randomly in a fluid. Sedi-
mentation or electrophoresis in a constant field can lead to partial alignment, in which the objects
rotate about a common body axis, but the phases of rotation for these objects are random. We
show that this phase disorder can be removed by two forms of programmed forcing. First, simply
alternating the forcing between two directions reduces the statistical entropy of the orientation arbi-
trarily. Second, addition of a small rotating component to the applied field in analogy to magnetic
resonance can lead to phase locking of the objects’ orientation. We identify conditions for alignment
of a broad class of generic objects and discuss practical limitations.

PACS numbers: 05.45.-a, 82.70.Dd, 87.50.ch

Whenever an object responds to external forcing by
periodic motion, this response gives potential utility in
characterizing the object, manipulating it, or using it
as a probe. A prime example is the response of a nu-
clear spin to a static magnetic field. The response to
the field enables one to characterize the molecular envi-
ronment of the spin[1] and to control the quantum state
of the molecules[2]. Analogs using electrical or mechan-
ical oscillations are well known[3–5]. These effects rely
on coherent response of the independent molecules con-
stituting the sample: they all oscillate in concert [6].
Coherence enhances the observed signal, whose degrada-
tion provides further information about the constituent
objects[7]. Moreover, once coherence is achieved, the ob-
jects can respond as one to further external forcing[8].

These well-known examples rely on a sharply resonant
response by the individual objects. Here we examine
analogous phenomena in the complementary domain of
purely dissipative responses of identical, asymmetric col-
loidal objects dispersed in a fluid. In the simple case of
sedimentation, the object is pulled by gravity acting at
the center of buoyancy and by hydrodynamic drag forces
over its surface. For asymmetric objects the drag forces
generally produce rotation as well as translation. This
rotational sedimentation effect has aroused recent inter-
est as a means of organizing colloidal objects[9–13]. For
many objects, the sedimenting force leads to uniform ro-
tation about a specific direction in the object which aligns
with the force. Conditions for this “axial alignment” have
been identified [10] and related to object shapes[9, 12].
Any external field producing motion in the fluid, such as
electrophoresis, produces analogous rotational effects[14],
as described below.

This axial alignment under constant forcing is neces-
sarily incomplete. Even when all the objects are rotating
at the same rate about the same body axis, they all have
arbitrary angular orientations about the aligning axis.
Here we show how programmed, time-dependent forcing

can remove this disorder so that all the objects are ro-
tating together coherently.

We explain these effects in the simple context of sedi-
mentation of rigid, asymmetric, noninteracting colloidal
objects. We first state the equation of motion that gov-
erns rotation of each object. Then we demonstrate align-
ment in the simplest case where the force simply alter-
nates between two different directions. Under mild condi-
tions this alternating forcing leads to continually improv-
ing alignment. We quantify this alignment in terms of
statistical entropy, showing that on average it decreases
indefinitely. We next demonstrate alignment via a rotat-
ing transverse force. Finally we discuss generalizations,
experimental implementations and practical limitations
of this method.

For simplicity we consider a single object immersed in
an infinite viscous medium and subjected to a sedimen-
tation force ~F (t) acting at a “forcing point” P in the
object. We consider the regime of creeping flow [15], in
which inertial forces are negligible and the force transmit-
ted to a moving object by the medium is proportional to
the object’s velocity. A rotating rigid body with center
of mass velocity ~v and angular velocity ~ω experiences a
proportional hydrodynamic force ~F and torque ~τ . This
proportionality defines a dimensionless block 2 × 2 ma-
trix whose 3 × 3 blocks A, T, and S depend only on the
object: [

~v
~ωR

]
=

1

6πηR

(
A TT
T S

)[
~F

~τ/R

]
, (1)

where η is the viscosity of the fluid, and R is the hydrody-
namic radius of the object. For simplicity below we will
use units such that 6πη and R are unity. By choosing
the forcing point P as our origin, we remove any exter-
nal torque, so that any rotation arises entirely from the
3× 3 “twist matrix” T: ~ω = T~F . The change of T owing
to this ~ω can be written[9]:

Ṫ = [~ω×,T], (2)
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Here we use the notation ~ω× to denote the antisymmetric
tensor corresponding to the vector ~ω: [~ω×]ij ≡ −εijk ωk.
Alternatively, in a rotating frame that is fixed in the ob-
ject, T becomes constant and F rotates: Ḟ = −ω × F .

In what follows we restrict our attention to a sub-
class of T’s—denoted “axially aligning”—that align in a
unique direction, independent of initial orientation, un-
der constant forcing. Such T’s have sufficiently large an-
tisymmetric parts that they have only one real eigenvalue
λ3 and eigenvector ~v3. Then T aligns with its ~v3 along
~F and rotates at angular velocity λ3 ~F [16]. An example
of one such object, made by four conjoined spheres, is
shown in Fig. 1a [17] .

We first consider a minimal forcing program: a mere
switch of the forcing direction by a “rocking angle” θ
from its initial direction along the z axis. Fig. 1b il-
lustrates the result of this switch. An initially uniform
distribution of phase angles φ becomes nonuniform; the
transient relaxation has reduced the disorder.

More explicitly, we may define a basis of unit vectors
ê1, ê2, ê3 in the object whose ê3 axis is the direction that
aligns with the force ~F , initially along the z axis in the
lab frame (Fig. 1a). At a given moment this object’s ê2
vector makes an azimuthal angle φ with the lab’s y axis.
This φ increases steadily in time as explained above. The
φ’s of the different objects are presumed to be uniformly
distributed. After ~F has switched into the x-z plane and
the objects have re-aligned, their ê2 vectors again differ
only in their azimuthal angle with the y axis, which we
denote ψ. Evidently an object’s angle ψ at a time t after
the switch depends on the angle φ immediately before
the switch: ψ = ψt(φ). As the figure illustrates, the ψ
angles are no longer uniformly distributed: some ψ’s have
bunched closer together; others have spread apart. For
convenience we shall choose a time t so that ψ(0) = 0.
Evidently if the rocking angle θ = 0, the motion is a
continuation of the uniform rotation without any switch:
ψ(φ) = φ. If θ increases from zero by a small amount,
ψ(φ) remains close to φ and ψ(φ) remains monotonic [19].
Further, for general θ, as φ advances by 2π, ψ must ad-
vance by the same net amount. Thus 2π =

∮
dφ (dψ/dφ)

[19]. Typical ψ(φ)’s are shown in Fig. 1c-e.
We may quantify the bunching effect of ψ using the

probability distribution function p(φ) measured after the
objects have aligned. The net effect on the distribu-
tion can be quantified using the statistical entropy [20]
H ≡ −

∫
p ln p. This H is maximal for uniform proba-

bilities and is small when the probability is concentrated
into small regions. After one switching process, each an-
gle φ evolves into some φ̃. The passage from φ to φ̃
involves two steps: we first wait a random fraction of the
rotational period, so that φ undergoes a shift by a ran-
dom angle α. We then switch the force F and allow the
objects to realign. The resulting angle φ̃ = ψ(φ + α).
The corresponding probability distribution p̃(φ̃) is found
using p̃(φ̃) dφ̃ = p(φ) dφ, so that p̃(φ̃) = p(φ)/ψ′(φ+ α).
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FIG. 1. a) The conjoined-sphere object referenced in the

main text axially aligned to a downward force ~F , viewed from
slightly below the horizontal. A lab basis x-y-z and a body
basis ê1, ê2, ê3 , centered at the forcing point, are shown. The
azimuthal angle φ is 0. The object’s T matrix in ê1, ê2, ê3
co-ordinates was computed using the HYDROSUB software
package [18]. A colored dot marks the ê2 axis. b) Motion
after a switch in force direction. The red line illustrates the
trajectory of the colored dot after the forcing direction has
switched to the x direction. Eleven other trajectories for ob-
jects initially rotated by different φ’s are also shown. After re-
alignment the points have become non-uniformly distributed
on the new circle. c), d) e): sample results of repeated rock-
ing by 90 degrees as described in the text. Left-hand graphs
show the mapping function ψ(φ). Center graphs show the
angles φ for 100 randomly oriented copies of the object after
100 switches. Right-hand graphs show the progression of the
entropy H with repeated rocking. Final low values are consis-
tent with the noise floor of the numerics . c) shows the results
of a monotonic ψ function. Line indicates the predicted slope
from (4). d) shows the results for the object shown in a, e)
shows the results for a strongly non-monotonic ψ(φ) whose
entropy does not decrease.

We now show that if θ is chosen so small that ψ′ is
everywhere positive, repeatedly switching ~F causes the
entropy to decrease without bound. For a single switch,
the change in entropy ∆H depends on the shift angle α
[19]:

∆Hα =

∮
p(φ) ln (ψ′(φ+ α)) dφ. (3)

We now consider the net change of H after a sequence
of many switches of F . Then the α-averaged change of
H, 〈∆H〉 can be written

〈∆H〉 =

∮
〈p(φ+ α)〉 ln (ψ′(φ)) dφ. (4)
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The 〈p(φ+ α)〉 is an unimportant positive constant.
The remaining integral is a constant that is necessarily
negative[20], owing to the convexity of the logarithm.
Thus after many switches, the entropy must decrease in-
definitely on average and the probability p becomes con-
fined to arbitrarily small regions of φ. As Fig. 1c and d
illustrate, the initial set of φ’s often evolve into a single
final φ [21]. Further, this reduction of H often occurs
even when ψ′ is not positive definite (Fig. 1d). Given
a mixture of two or more alignable species, this method
aligns each species. However, one readily finds examples
ψ(φ) where the entropy does not decrease (Fig. 1e). In
any case the direction of alignment is not controlled in
this method.

A second method of forcing can achieve alignment in a
controlled direction. We add a rotating transverse force
to the original static force, so that the force vector is
tilted at an angle θ from the z axis. Thus ~F rotates at a
constant angular velocity ~Ω = |Ω| ẑ.

~F (t) = |F | ( ẑ cos θ + [x̂ cos Ωt+ ŷ sin Ωt] sin θ ) . (5)

In a co-rotating frame rotating at angular velocity ~Ω,
the force ~F becomes constant. With a proper choice of
Ω and θ the objects too may evolve into a state of co-
rotation with the force, with a common orientation. Co-
rotation requires that T remain in an orientation such
that ~Ω = T~F . As noted above, a fixed force with θ = 0
leads to co-rotation with ~Ω = λ3 ~F . In the ê1, ê2, ê3 body
reference frame, denoted with subscript b, co-rotation
means ~Ωb = Tb ~Fb for some constant ~Fb and correspond-
ing ~Ωb. The forcing parameters required are evidently a)
|F |2 = |Fb|2, b) |Ω|2 = |Ωb|2 and c) cos θ = F̂b · Ω̂b.

With this same choice of parameters other co-rotating
~F ’s are also possible. We denote these as ~F ′b. Because

of condition a) such ~F ′b’s have the same magnitude as ~F ,

so that the only difference in the ~Fb’s is in their direc-
tion F̂ ′b. In terms of the matrix Tb, condition b) can be

written F̂ ′b TbTTb F̂ ′b = F̂b TbTTb F̂b (= |Ω|2/|F |2). (If

F̂ ′b satisfies this condition, so does −F̂ ′b.) This condition

restricts F̂ ′b to two (closed) curves on the unit sphere like
the dashed line in Fig. 2a-c. Likewise condition c) reads
F̂ ′b Tb F̂ ′b /|TbF̂ ′b| = F̂b Tb F̂b /|TbF̂b| (= cos θ). This

condition restricts F̂ ′b to a second pair of curves on the
unit sphere. Any intersection of these curves represents
an F̂ ′b that co-rotates with the given forcing.

These compatible Fb’s can readily be found when the
tilt angle θ is small. Figs. 2a-c show the behavior of the
co-rotating F̂ ′b s as one increases θ from 0 with |Ω| = λ3F .
The condition-b) curves, enforcing the magnitude of Ω,
are thus independent of θ and do not change. These
curves pass through ê3 and −ê3, i.e., the F̂b for θ =
0. Condition c), enforcing cos θ requires F̂b ‖ ê3 when
θ = 0. As θ increases, the condition-c) curves expand to
small rings encircling ±ê3. Each ring must intersect its
condition-b) curve twice. The four co-rotating F̂ ′b s are

then two adjacent pairs near ±ê3. In what follows we
consider only the two intersections adjacent to the stable
+ê3 direction

To achieve full alignment, an arbitrary initial state
must evolve into one of these two co-rotating states. We
argue that this alignment occurs generally for sufficiently
small θ. We consider the motion of T in the co-rotating
frame, in which ~F and ~Ω are fixed. We first align T axi-
ally using a constant ~F . We can express the orientation
of T using a rotation vector ~η. We distinguish angular
rotations η3 along the ~Ω axis from rotations η⊥ perpen-
dicular to it. In this initial state, η⊥ = 0, while the
orientation η3 about the aligning axis is arbitrary: axial
alignment has restricted ~η to a closed one-dimensional
curve of possible values. A small rotation η3 has no fur-
ther effect on the motion, but a small rotation η⊥ leads
to a stable return to η⊥ = 0.

Now we increase θ to a small nonzero value. Then ~η is
no longer constant. The time derivative ~̇ηθ(~η) differs from

~̇η0(~η) by a small, smooth perturbation. We now suppose
that η⊥ converges to some η3-dependent value near 0.
The remaining motion, is along a one-dimensional closed
curve, slightly distorted from the neutral curve found at
θ = 0. We may express this residual one-dimensional
motion using the co-ordinate η3, whose time derivative
is some function η̇3θ(η3). The two fixed points identified
above are necessarily fixed points η∗3 , with η̇3(η∗3) = 0.
Since η̇3θ is a smooth function on the curve, its deriva-
tives at these two fixed points are necessarily opposite
in sign; hence opposite in stability. Thus in this picture
all η3 must must converge to the stable η∗3 . Numerical
studies like those of Fig. 1 confirmed this finding for
numerous asymmetric T’s .

A local stability analysis confirms the opposite stabil-
ities of the two fixed points F̂b near ê3. Starting from a
given forcing with a corresponding F̂b, we rotate T by a
slight angular displacement ~η from its fixed-point state
T∗, in the co-rotating frame so that T = T∗ + [~η×,T∗].
The undisplaced state ~η = 0 is co-rotating, so that ~̇η = 0.
Near ~η = 0, ~̇η varies linearly with η: ~̇η = K~η for some
“stability matrix” K = [T∗ ~F×− (T∗ ~F )×] [19]. From this
K one may determine by standard methods [22] whether
the motion returns stably to the co-rotating state at T∗
after the small displacement ~η; and, indeed, one finds
that the two fixed points of the previous paragraph have
opposite stabilities. Figs. 2a-c use this K to determine
which F̂b represent stable co-rotating states. The figure
shows large stable and unstable regions of F̂b. We note
that the aligning axis ê3, being neutrally stable, lies at
the boundary between the stable and unstable regions.

These alignment methods are applicable for any situa-
tion where an object responds to a vector field by ro-
tating. For example, any asymmetric object with an
electrophoretic mobility has such a rotational response
[14]. Programmed forcing via tensor interactions such as
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FIG. 2. a) The sphere of possible directions of the body frame

force ~Fb for the object of Fig. 1a. The solid curve gives the
F̂ ′b s satisfying constraint c in the text, enforcing an angle
θ = 0.3. The dashed curve gives the F̂ ’s satisfying constraint
b in the text, enforcing |Ω| = λ3|F |. The intersections of the
two curves mark co-rotating states. The light shading marks
regions of stable fixed points F̂b for this object. b), Same, for

the T used for Fig. 1 e with θ = 0.2. c) Same as b, with F̂b

chosen to lie far from the aligning direction ê3 to illustrate
alignment with large tilt angle. Here |Ω 6= λ3|F |; instead,
~Ωb = Tb

~Fb. d) Time sequence of orientations using the object
and alignment protocol described in a. Three arbitrarily ori-
ented copies of the object, represented by their ê1, ê2, ê3 bases
are shown. Colored arrows indicate the direction of forcing.
The three objects evolved to a common final orientation. e)
Similar time sequence for the T matrix used for Fig. 1 e. f)
Similar time sequence for the T matrix and forcing condition
shown in c.

field gradients or shear flow add further possibilities for
alignment. Any proportional response to vector forcing
is necessarily governed by a T matrix like that above.
This is true for deformable objects whenever the driving
force is weak enough to avoid deformation. It is true for
fluctuating shapes whenever the driving is weak enough
to average over the fluctuations of T.

Complete alignment brings benefits that are not pos-
sible in axial alignment. Once a set of objects have been
completely aligned, they must respond identically to sub-
sequent forcing. Then eg. by gradually increasing the Ω
of Eq. 5 one may achieve phase locking without knowing
about the T of the objects in advance [19]. Further exten-
sions of programmed phoresis hold promise for orienting

non-axially-aligning objects not considered here.

In practice, alignment is degraded by rotational diffu-
sion, characterized by a relaxation time τD, which scales
as the cube of the object’s size R [15]. For alignment, the
rotational speed ω must be much larger than 1/τD. Thus,
under sedimentation, alignment is strongly degraded asR
is decreased: ωτD ∼ R4. The asymmetric object of Fig.
1a has ωτD ' 260 [17] . Under electrophoresis an object
with a nominal mobility of 10−8 meters/(volt sec) and
field of 104 volts/m, would need to be over 10 microns in
size to give comparable ωτD. Thus these methods require
objects of near-micron scale or larger. Since alignment
effects require object asymmetry, nearly symmetric ob-
jects are harder to align.

Unless the objects are very dilute [23], their mutual
hydrodynamic interactions would be significant: an ob-
ject B is advected by the perturbed Oseen flow around
a nearby object A [24]. Only the gradient of this flow
rotates object B. The rotational perturbations on an ob-
ject are thus shorter range and hence weaker than are
translational hydrodynamic interactions. Ordinary elec-
trophoresis produces no Oseen flow in the host fluid[14];
thus electrophoresis is less subject to interaction effects.
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Foundation’s MRSEC Program under Award No. DMR-
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