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Inspired by recent studies revealing unexpected pliability of semiflexible biomolecules like RNA
and DNA, we have systematically investigated the range of structural phases by means of a simple
generic polymer model. Using a two-dimensional variant of Wang-Landau sampling to explore the
entire conformational space in energy and stiffness within a single simulation, we identified the entire
diversity of structures existing from the well-studied limit of flexible polymers to that of worm-like
chains. We also discuss, in detail, the influence of finite-size effects in the formation of crystalline
structures which are virtually inaccessible via conventional computational approaches.
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The understanding of biomolecular function is in-
evitably based on the detailed knowledge of the mechan-
ical response of biomolecular systems to thermal fluctu-
ations. The competition between entropic and energetic
system properties establishes structural phases. Their
stability and associated transition barriers between them
determine the ability of the system to respond to changes
in the external environment. Given the complexity of
the chemical structure of biomolecules, the identifica-
tion and classification of the structural phases by means
of thermodynamic analysis is difficult. The highly de-
bated problem of protein folding is the most prominent
example in this regard, even more so as even complex
protein models often fail to make correct structure pre-
dictions. It is, therefore, rather surprising that several
dynamic and structural properties of nucleic acids such
as DNA and RNA have been successfully described by
a comparatively simple approach, the Kratky-Porod or
wormlike chain (WLC) model [1]. In this model, the en-
ergy is determined by thermally excited bending only,

E = 1
2
kBT κ̄

∫ L

0
ds (∂su)

2, where T is the temperature, κ̄
is the bending stiffness, and L is the contour length of
the polymer chain, which is represented by the continu-
ous curve x(s) with unit tangent vector u(s) = ∂sx(s).
The correlation function 〈u(s)u(s + ∆s)〉 decays expo-
nentially with ∆s, defining a characteristic correlation
length scale ξ, called the persistence length. In three-
dimensional embedding space, ξ = κ̄. Since κ̄ is a mate-
rial constant, this result thus also implies that ξ = const,
i.e., it is independent of L (and thus the number of nu-
cleotides N) and T . This appears to be an oversimplified
result, but the structural behavior of the most famous
example, long [O(103) base pairs] double-stranded DNA
with ξ ≈ 50 nm, seems to be well described under this
assumption.

Bending-energy dominated polymers are called semi-
flexible polymers. DNA/RNA and even some protein
complexes, such as myosin fibers and actin filaments, be-

long to this category. However, lacking volume exclu-
sion and potential nonbonded monomer-monomer inter-
actions, the WLC model is generally unable to describe
structural transitions of single polymers, e.g., the struc-
tural phase space of interacting, flexible polymers. This
is a striking problem and motivation for our study, as re-
cent studies of single- and double-stranded nucleic acids
reveal that persistence lengths might not be constant, but
depend on N and external conditions such as tempera-
ture and salt concentrations [2], implying a greater flexi-
bility than previously thought. Finite-size effects induced
by small chain lengths and the actual discrete nature of
polymer chains (allowing for “kinks” and cyclization in
DNA [3–6]), as well as excluded-volume effects causing
an effective thickness due to extended side chains (e.g.,
bottle-brush polymers [7] and proteins [2]) are also po-
tential sources for deviations from the standard WLC
behavior. Former studies of the influence of attractive
interactions on the conformational behavior of semiflex-
ible polymers have revealed first insights into the phase
structure [8]. Investigations of orientational order [9],
nonequilibrium properties [10, 11], and entanglement [12]
in melts and liquid crystals of semiflexible polymers have
also been subject of recent studies.

Recent experiments found evidence for higher flexibil-
ity in DNA at short length scales [13, 14]; implying the
need to better understand packing properties of DNA at
small length scales. Further motivation is found in re-
cent studies of nanoscale fabrication processes [15] which
utilize finite-size DNA segments to create highly-ordered
three-dimensional objects.

On the other end, there has also been much inter-
est in studying the structural behavior of fully flexible
polymers. This class of polymers exhibits a variety of
dense structural phases governed entirely by competing
volume-exclusion effects and attractive interactions be-
tween nonbonded monomers. Interactions between pairs
of monomers i and j (bonded or nonbonded) are usu-
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ally modeled by the standard Lennard-Jones (LJ) po-
tential ULJ(rij) = ǫ[(r0/rij)

12 − 2(r0/rij)
6], where rij is

the distance between two nonbonded monomers. The
parameters r0 and ǫ fix the length and energy scale of
this interaction (we set ǫ = 1.0 and r0 = 1.0). The
elasticity of bonds is described by the bond potential
Ubond(ri i+1), which is a combination of the LJ potential
and the finitely extensible nonlinear elastic (FENE) po-
tential [16] UFENE(ri i+1) = −KR2 ln{1− (ri i+1/R)2}1/2

(we set R = 1.2 and K = 2). The LJ parameters for
the bonds were chosen to make the potential Ubond min-
imum at bond length r = r0 = 1. Thus, the total energy
of a given conformation reads Eflex =

∑
i<j ULJ(rij) +∑

i Ubond(ri i+1).

For this class of polymers, surface effects are essential
and thus transition properties depend sensitively on the
chain length [17–19]. This complex transition behavior
requires sophisticated computer simulation methodolo-
gies [20], such as generalized-ensemble Monte Carlo sim-
ulation algorithms like multicanonical sampling [21] or
the Wang-Landau (WL) method [22].

In this Letter, we will discuss the influence of bending
rigidity on the ability of classes of single elastic polymers
to form stable compact structural phases. Our goal is
the construction of the entire conformational phase dia-
gram, parametrized by temperature T and bending stiff-
ness κ; the latter is a constant material parameter in
our discrete polymer model, similar to κ̄ in the contin-
uous wormlike chain model. Therefore, we extend the
model for elastic, flexible polymers by a WLC-like bend-
ing term, E = Eflex + Ebend. In our discrete polymer
model, Ebend = κ

∑
l(1− cos θl), where θl represents the

angle between adjacent bonds. We focus our study on
polymers with N = 30 monomers. Thus, the system
exhibits sufficiently high cooperativity enabling the for-
mation of stable structural phases, although finite-size
effects are not negligible. It therefore possesses essential
features that are common to a large class of biomolecules.
We note that the general phase structure also remains
intact for larger systems, however, one has to keep in
mind that the finite-size effects essentially affect the for-
mation of structured (pseudo)phases of such small sys-
tems and geometric assemblies of monomers depend on
N [17–19]. For this purpose, we have investigated and
compared these phases for different chain lengths in the
interval 13 ≤ N ≤ 55.

For an efficient and systematic simulation of this
model, we have developed a variant of the WL method,
which samples the entire (E, κ) space in a single
simulation. Monte Carlo updates, including energy-
dependent random-displacement, reptation, and end
cut-and-join moves [17], as well as κ shifts, are ac-
cepted with the probability p((E1, κ1) → (E2, κ2)) =
min[g(E1, κ1)/g(E2, κ2), 1], where g(E, κ) is the number
of states for given values of energy and stiffness. The
iterative estimation of g(E, κ) is guided by the WL pro-

FIG. 1: (Color online) Surface plot of the specific heat for
classes of polymers with N = 30 monomers as a function of
temperature T and stiffness κ. Brighter colors correspond to
higher thermal activity, signaling structural transitions. For
a large number of κ values, locations of peaks and shoulders
are emphasized by circles and squares, respectively, for easier
identification of transition points. Conformational phases are
labeled: A – random-coil, A∗ – random-rodlike, B – liquid-
globular, C – solid-globular, Dm – rodlike bundles with m
segments, E – toroidal.

cedure that has previously been used for the study of
flexible polymers [17]. For redundancy checks and error
estimation, a minimum of fifteen independent runs were
performed and averaged for each chain length.

For the identification of the structural phases, we in-
vestigate thermal fluctuations of energy and radius of
gyration as functions of T and κ by canonical statisti-
cal analysis. The quantities we consider here are defined
by temperature derivatives of the mean energy, in the
form of the specific heat cV (T, κ) = (1/N)∂〈E〉/∂T =
(〈E2〉 − 〈E〉2)/NkBT

2, and of the square radius of gy-
ration, ∂〈R2

g〉/∂T = (〈ER2
g〉 − 〈E〉〈R2

g〉)/kBT
2 (kB ≡ 1

from now on). Both quantities can be considered as ther-
modynamic landscapes in parameter space (T, κ), where
cooperative behavior (resulting in structural transitions)
is signaled by regions of high thermal activity (“ridges”).
It should be noted that this kind of comparative canon-
ical analysis leaves a systematic uncertainty in the esti-
mation of transition lines, yielding a complete, but rather
qualitative picture of the transition behavior. This is due
to the finite size of the system, and for this reason, struc-
tural phases identified here should not be confused with
phase transitions in the thermodynamic sense.
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Our results for the energetic and the structural rep-
resentations of the conformational phase diagram are
shown in Figs. 1 (specific heat) and 2 (structural fluc-
tuations). Both landscapes feature essentially the same
information, implying the robustness of our approach.
Below Fig. 1, minimum-energy conformations (MECs),
representative for the structured phases (C, D, E) in
different κ intervals, are depicted. Peak and shoulder
positions have been identified in the specific heat and
∂〈R2

g〉/∂T landscapes. Their locations are marked by
symbols in the surface maps in Figs. 1 and 2, revealing
transition lines between a number of unique states as a
function of T and κ. The obtained structural phase di-
agram can then be clearly separated into three major
regions: random coils and rods (A), liquid globules (B),
and a variety of structured phases (C, D, E).

Phase A can be considered as the vapor phase, at
least near the entropy-dominated flexible edge (small κ
values), where conformations are unstructured, random
coils. With increasing stiffness, the entropic freedom gets
gradually more restricted by the competing bending en-
ergy and structural fluctuations become smaller. In the
regime A∗, where bending cannot be compensated any-
more by entropic freedom (as in A) or by the energetic
gain of attractive nearest neighbor interaction (cycliza-
tion in the toroidal phases E), only rodlike structures
persist. Energetic and structural fluctuations indicate a
transition between A and A∗.

The structural behavior of the polymer in region A∗

resembles that of a WLC, and the persistence length is
virtually constant and identical with the bending stiffness
parameter, ξ ≈ κ. Note that only this single phase in
the complex phase diagram accommodates the classes of
polymers that are typically considered as “semiflexible”
and “stiff”.
Phase B is the only structural phase where the poly-

mer behaves like a liquid. As is typical for rather small
polymer chains, the Θ collapse transition between A and
B is not pronounced in the specific heat (only shoulders
in Fig. 1), but it is very strong in the structural response
quantities (see Fig. 2). Conformations in B are unstruc-
tured, but compact and globular. Beyond a threshold
value (κ ≈ 4.5 for N = 30), there is no longer a liq-
uid phase and the polymer crystallizes abruptly out of
the “vapor” phase A upon cooling (order-disorder tran-
sition).
The most intricate conformational macrostates be-

long to the compact solid, globular phase C. In this
regime, the polymer maximizes the number of pairwise
monomer-monomer contacts and is, therefore, highly
energy-dominated. Since monomers in the center of the
globule can only possess a maximum number of 12 neigh-
bors, structure formation is guided by a competition of
surface and volume effects. Small changes in T or κ re-
sult in restructuring. Thus, C is actually a composition
of several rather glassylike subphases, dominated by en-

FIG. 2: (Color online) Top: Surface plot of d〈R2
g〉/dT , with

peaks indicated by circles, and subsequent lines highlighting
conformational phase boundaries. Dashed lines indicate tran-
sitions suggested by the Khalatur parameters and the specific
heat. Bottom: Square radius of gyration R2

g, relative num-
ber of pairwise monomer-monomer contacts Npair/N , and the
number of icosahedral cores Cicos for the MECs in dependence
of κ, providing insight into differences of structural properties
in the low-T phases.

ergetically metastable states. Close to the flexible limit
(κ = 0), finite polymers tend to form structures with lo-
cal symmetries. Most amazing are the perfectly icosahe-
dral structures known for flexible polymers with “magic”
chain lengths N = 13, 55, 147, . . . [17, 18]. The MECs
of the 30mer are found to contain one (κ < 1.0) or two
icosahedral cores (1.0 < κ < 3.5), see Fig. 2 (bottom).
The characteristic structures in the Dm phases are bun-

dles of rodlike fibers, where m is the number of fibers in
the bundle (the number of turns is m− 1). The number
of turns/fibers is governed by the competition of the en-
ergetic gain in forming monomer-monomer contacts and
the energetic “penalties” caused by the turns. Therefore,
the precise substructure of this phase strongly depends
on N . Since turns become energetically more costly for
larger values of κ, the number of fibers decreases corre-
spondingly with increasing κ, along with the number of
monomer-monomer contacts. This can be seen in Fig. 2
(bottom), where the relative number of pairwise con-
tacts Npair/N for the MECs is plotted in dependence
of κ. This quantity exhibits a noteworthy, but rather
slight, step-like decrease in the D phase (note the pro-
nounced step-like increases in the MECs’ radii of gyra-
tion in this regime shown in the same figure). Therefore,
the length of the bundle Nbundle ≈ N/m can easily be
estimated by the ratio of the relevant competing energy
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FIG. 3: (Color online) MEC energies for chains with 13 ≤
N ≤ 55 in dependence of κ. Symbols indicate points of quali-
tative structural changes of the MECs (e.g., change from solid
to a rod, or change within rods, D3 to D4, etc.). Dashed lines
with arrowheads are visual indicators of possible behavior for
N > 55, and are not any formal extrapolation.

scales: Nbundle ≈ κ/ǫ (where ǫ = 1 in our units), such
that the degree m of the D phases is empirically given by
Nǫ/κ [cp. examples of Dm conformations in Fig. 1 (bot-
tom)]. Note that as N increases, higher-order geometries
with larger contact numbers become present, e.g., cylin-
drical hcp-based conformations appear for N ≥ 45, in
which case the simple relationship between m and κ no
longer holds (see also Fig. 3).

Eventually, we find toroidal loops in phase EL and
hairpins in EH, very characteristic for semiflexible poly-
mers near the WLC regime under the influence of non-
bonded interactions. These structures resemble sponta-
neously cyclized double-stranded DNA structures that
are deemed essential for gene regulation processes in
cells [3, 4]. The dominant structural behavior in both
regions is difficult to identify and the Khalatur param-
eters [8] were used to unravel structural details of EL

and EH. Toroids found in the EL region undergo subtle
changes in structure, making them difficult to analyze.
Changes occurring with κ are typically seen in the in-
ner radius of the conformation, however, larger chains
exhibit significant changes in stacking of loops within a
toroid. The MEC analysis in Fig. 2 does not allow for
a clear distinction between these cases, even more so as
structures from the boundary region of D3 and EH mix.

Supporting our conclusion that the phase structure ob-
tained forN = 30 is qualitatively similar for other system
sizes, Fig. 3 shows the κ dependence of MEC energies for
chain lengths in the interval 13 ≤ N ≤ 55. This is par-
ticularly relevant for the structural phases dominated by
finite-size effects such as the D phases. D2 through D5

are consistent with previous discussions, but this pattern
is upset for N ≥ 35, where a jump to D7 (hexagonal close

packing) occurs, with only a single instance of D6 (red
pattern) occurring for N = 45 (within our resolution of
N).

In conclusion, we have investigated the full conforma-
tional behavior of all polymer classes, from flexible to
stiff, i.e., the dependence on temperature and bending
stiffness. For this purpose, we have specifically performed
WL computer simulations of a generic energy model for
flexible polymers, extended by a standard bending term.
This study focused on bridging the apparent gap between
recent studies on flexible polymers and the wormlike-
chain model typically used to describe the behavior of
semiflexible polymers. Consequently, we not only iden-
tified the general phases between these limits, but also
discussed the influence of finite-size effects on structure
formation. This has become a significant problem as it
has become apparent that the structural properties of
classes of short semiflexible biomolecules can significantly
deviate from the standard wormlike-chain behavior. This
implies that the changed structural behavior needs to
be considered in the understanding of biomolecular pro-
cesses on short length scales, and also in the nanofabri-
cation of molecular devices.
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[9] F. Affouard, M. Kröger, and S. Hess, Phys. Rev. E 54,
5178 (1996).
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