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The “textbook” phonon mean free path (MFP) of heat carrying phonons in silicon at room 
temperature is ~40 nm. However, a large contribution to the thermal conductivity comes from 
low-frequency phonons with much longer MFPs. We present a simple experiment demonstrating 
that room temperature thermal transport in Si significantly deviates from the diffusion model 
already at micron distances. Absorption of crossed laser pulses in a freestanding silicon 
membrane sets up a sinusoidal temperature profile that is monitored via diffraction of a probe 
laser beam. By changing the period of the thermal grating we vary the heat transport distance 
within the range ~1-10 μm. At small distances, we observe a reduction in the effective thermal 
conductivity indicating a transition from the diffusive to the ballistic transport regime for the 
low-frequency part of the phonon spectrum. 
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The study of thermal transport at microscopic distances [1-8] is largely stimulated by practical 
needs such as thermal management of microelectronic devices [2], but also poses a number of 
fundamental physics problems. In dielectrics and semiconductors heat is carried predominantly 
by phonons, and the relationship between the phonon mean free path (MFP) and a characteristic 
length scale determines whether the thermal transport is diffusive or ballistic. At cryogenic 
temperatures phonon MFPs are relatively long and ballistic phonon propagation over 
macroscopic distances has been studied extensively [9].  At room temperature, on the other hand, 
the majority of phonons have MFPs in the nanometer range.  The often cited “textbook value” of 
the phonon MFP in Si at 273K based on a simple kinetic theory [10] is 43 nm, with even shorter 
MFPs listed for most other materials. According to this simplistic view one would not expect 
deviations from the classical thermal diffusion model at distances significantly exceeding 40 nm.    

However, a growing body of experimental and theoretical studies has been indicating a large role 
of low-frequency phonons with MFPs much longer than tens of nanometers. Revising the 
“effective” room temperature phonon MFP in Si upwards to 260-300 nm has been suggested for 
the analysis of thermal transport in thin films [11] and superlattices [12].  Recent measurements 
in Si have indicated non-diffusive transport on the tens of microns distance scale at temperatures 
20-100 K [7]. Still, it has been widely held that at room temperature heat transport in Si on the 
~1 μm scale is consistent with diffusion theory [1]. 

On the theoretical side, first principles calculations of lattice thermal conductivity and phonon 
MFPs have emerged in recent years [8,13-16].  Although quantitative discrepancies between 
different models still persist, they invariably point to a large contribution of low-frequency 
phonons to heat transport.  For example, simulations by Henry and Chen [13] have indicated that 
phonons with MFP exceeding 1 μm contribute almost 40% to room temperature thermal 
conductivity of Si.  

Measuring non-diffusive thermal transport at small distances in a configuration that can be 
quantitatively compared to theoretical models has been a challenge for experimentalists. 
Theoreticians favor the model of heat transport through a slab of material between two black 
body walls [8,17], which is all but impossible to realize in experiment. Just to mention one 
difficulty, any real interface between two materials involves thermal boundary resistance, which 
by itself presents a long-standing problem in nanoscale thermal transport [1,18].  For a 
persuasive demonstration and to enable theoretical analysis beyond the diffusion model, an 
experiment should preferably (i) avoid interfaces, (ii) ensure one dimensional thermal transport, 
and (iii) clearly define the distance of the heat transfer and provide a way to vary this distance in 
a controllable manner.  Experiments revealing non-diffusive transport on sub-micron length 
scales [3-5] were done with more complicated configurations involving heat transport from an 
irradiated film into a substrate, with the effective heat transfer distance in the substrate only 
indirectly inferred. 

A method satisfying the above requirements has in fact been well known under the name laser-
induced transient thermal gratings [19,20].  In this method, two short laser pulses are crossed in a 
sample resulting in an interference pattern with period L defined by the angle between the beams.  
Absorption of laser light leads to a spatially periodic temperature profile, and the decay of this 
temperature grating by thermal transport is monitored via diffraction of a probe laser beam.  The 
heat transport from grating peaks to nulls does not involve heat transfer across any interfaces and 
the distance scale is controlled by the period of the optical interference pattern. An additional 
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advantage of the method is a spatially sinusoidal temperature profile facilitating theoretical 
treatment.   

In this report, we present transient thermal grating measurements of in-plane heat transport in 
freestanding silicon membranes. By varying the grating period we are able to directly measure 
the effect of the heat transfer distance on thermal transport [21].   

The freestanding silicon membranes were fabricated by backside etching of a silicon on insulator 
(SOI) wafer. In this process, the underlying Si substrate and buried oxide layer are removed 
through a combination of dry and wet etching techniques to leave a top layer of suspended 
silicon as shown in Fig. 1(a) (also see [22]). Measurements were conducted on two 400 nm thick 
membranes (membranes 1 and 2) with 400×400 μm2 freestanding area fabricated on the same 
SOI wafer. 

 
FIG. 1 (color online). Schematics of the sample and the experiment. (a) Freestanding Si 
membranes are fabricated from SOI wafers by backside etching. (b) Pump pulses are crossed in 
the silicon membrane, generating the transient thermal grating monitored via diffraction of the 
probe beam.  Diffracted probe light is combined with a reference beam and directed to a fast 
detector. 

Excitation laser pulses (wavelength λe = 515 nm, pulse duration 60 ps) were crossed in the Si 
membrane with external angle θe as depicted in Fig. 1(b).  Interference between the two beams 
created a spatially periodic intensity and absorption pattern with interference fringe period 
L=λe/2sin(θe/2).  Above-bandgap photon absorption in the silicon membrane led to excitation of 
hot carriers, which promptly transferred energy to the lattice and relaxed to the bottom of the 
conduction band [23].  Energy was deposited with a sinusoidal intensity profile resulting in a 
transient thermal “grating” with period L, i.e. with carrier population and induced temperature 
rise modulated as (1 + cos qx) where q = 2π/L is the grating “wavevector” magnitude; excited 
carriers and heat subsequently diffused from grating peaks to nulls. The membrane thickness was 
selected to be smaller than the ~1 μm absorption depth at the excitation wavelength to ensure 
one-dimensional in-plane heat transport, with the temperature gradient and heat flux only in the 
transient grating direction, parallel to the membrane surfaces.  The measurements were 
performed in ambient air. The effect of the thermal conductivity of air on the thermal grating 
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decay in the membrane was negligible as shown by modeling heat transport in a membrane in 
ambient medium [22].  

Increased temperature and excited carriers induced changes in the complex transmittance, giving 
rise to time-dependent diffraction of a continuous wave probe beam (wavelength λp = 532 nm).  
We used optical heterodyne detection whereby the diffracted signal was superposed with the 
local oscillator, or reference beam. Heterodyne detection not only increases the signal level but 
also yields a signal linear with respect to the material response that simplifies the interpretation 
and analysis of the data [22]. A simple set-up using a diffraction grating to produce both 
excitation and probe-reference beam pairs ensures the precise overlap of the probe and reference 
beams as well as the stability of the heterodyne phase [22,24]. The signal and reference beams 
were directed to a fast detector, whose output was recorded on an oscilloscope. 

 
FIG. 2 (color online). Experimental data from membrane 1. (a) Thermal decay traces for 
transient grating periods ranging from 3.2 to 18 μm.  The decay time increases with the grating 
period. The inset shows the complete trace for the 7.5 μm period. (b) Thermal grating decay rate 
versus the grating wavevector squared showing the departure from diffusive behavior.  The 
dashed line representing the diffusion model was obtained by fitting the low-wavevector data in 
the range L = 15-25 μm.  

Data were collected at ~15 transient grating periods ranging from 2.4 to 25 μm in the two silicon 
membranes.  Figure 2(a) shows traces collected from membrane 1 with transient grating periods 
from 3.2 to 18 μm.  A complete waveform shown in the inset reveals a sharp negative peak due 
to electronic excitation. Fortunately, the ambipolar carrier diffusion coefficient in Si is about an 
order of magnitude greater than the thermal diffusivity [25], therefore electronic and thermal 
relaxations are well separated in the time domain: after the carrier population grating is washed 
out due to carrier diffusion, we are left with a purely thermal grating which decays more slowly.  
For example, the electronic decay time seen in the inset in Fig. 2 (a) is 1.7 ns while the thermal 
decay time is 26 ns, as determined by a bi-exponential fit [22].  From the traces in Fig. 2(a), we 
can see that the thermal decay becomes slower as the grating period increases; it takes longer for 
heat to move from grating peaks to nulls. According to the thermal diffusion equation, the 
temperature perturbation decays exponentially [19], T(x,t) ∝ cos qx exp(-γt), with the decay rate 
γ given by 
γ = αq2 = kq2/C,          (1) 
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where α is the thermal diffusivity, equal to the ratio of the thermal conductivity k to the heat 
capacity per unit volume C.  

We found that the thermal decay remains exponential within the whole range of grating periods 
[22].  However, the decay rate deviates from the expected q2 dependence as can be seen in Fig. 
2(b).  This departure from diffusive behavior is even more apparent in Fig. 3(a) where we have 
plotted the effective thermal conductivity, obtained from the measured decay rate using Eq. (1), 
scaled by the bulk Si value, as a function of the grating period for the two membranes.  At large 
grating periods, the thermal conductivity approaches a constant level, which is still significantly 
smaller than the bulk conductivity. It is well known that in-plane thermal conductivity of thin 
membranes is reduced due to scattering of phonons at the boundaries [11,17]. However, as long 
as the diffusion model is valid, the thermal grating decay rate should vary as q2, and the 
measured thermal conductivity value should remain independent of the grating period.  We 
observed a significant further reduction in the measured thermal conductivity as the grating 
period was reduced below about 10 μm, clearly indicating a departure from diffusive thermal 
transport.  

   
FIG. 3 (color online). (a) The normalized effective thermal conductivity versus transient grating 
period compared with theory. (b) The calculated effective thermal conductivity as a function of 
the grating period and the membrane thickness. 

The decrease in the effective thermal conductivity is explained by the transition from diffusive to 
ballistic transport regime for the low-frequency part of the phonon spectrum. There is no 
contradiction with the intuitive expectation that ballistic transport should be faster than diffusive: 
indeed, the grating decay is always faster at shorter periods as seen directly in Fig. 2(a). 
However, the increase in decay rate with wavevector is slower than quadratic at short length 
scales since the traversal time of heat carried by ballistic phonons decreases linearly with 
distance, not quadratically as in the diffusive limit.  

In the relaxation time approximation which works well for Si above ~100K [14], thermal 
conductivity is given by the integral over the phonon spectrum, 

k =
1
3

Cω vΛdω
0

ω max∫  ,          (2) 

where Cω is the differential frequency-dependent specific heat per unit volume, v is the phonon 
group velocity, Λ is the frequency-dependent MFP, and the summation over all phonon branches 
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is implied. According to the Fourier law of heat conduction, the contribution of phonons at a 
given frequency to the heat flux is given by Qω=CωvΛΔT/3l, where l is the distance between the 
heat source and the heat sink and ΔT is the temperature difference. In this model the heat flux is 
supposed to increase indefinitely with increasing MFP, which cannot be true; obviously, it 
cannot exceed the purely ballistic black body radiation limit [12], Qω bb =CωΔT/4.  Thus the 
contribution of ballistic phonons with Λ>>l to thermal transport will be suppressed at least by a 
factor of ¾(l/Λ) compared to the predictions of the diffusion model.  In the simplest approach, 
the contribution of all phonons with Λ>l is simply disregarded, while for all phonons with Λ<l 
the diffusion model is assumed to hold [5,7]. In this case the “effective” thermal conductivity is 
found by simply cutting off the low frequency part of the integral in Eq. (2). 

The simplicity of the transient grating geometry allowed us to develop a more rigorous theory of 
the thermal grating relaxation in a bulk material based on the Boltzmann transport equation for 
phonons with MFP on the order of or larger than l = L/2 in combination with the diffusion 
equation for the “thermal reservoir” of high frequency phonons with Λ<<l [26].  We found that 
the grating decay remains exponential with the decay rate obtained by replacing the thermal 
conductivity in Eq. (1) by the effective conductivity, 

keff =
1
3

ACωvΛdω
0

ω max∫

A qΛ( )=
3

q2Λ2 1−
arctan qΛ( )

qΛ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
  ,        (3) 

where the “correction factor” A  becomes unity in the diffusive limit qΛ<<1 and falls off as  
(qΛ)-2 in the ballistic limit qΛ>>1. Unlike the simple “cut-off” model, Eq. (3) describes a smooth 
transition between diffusive and ballistic limits. The contribution of ballistic phonons to thermal 
transport is suppressed even more than according to the estimate based on the black body 
radiation limit because in the transient grating experiment the heat transport does not occur 
between black bodies. To the contrary, our heat “sources” and “sinks”, i.e. maxima and minima 
of the thermal grating, become almost transparent for ballistic phonons in the limit qΛ>>1, 
which accounts for an additional factor of ~(qΛ)-1 in the ballistic phonon contribution to the heat 
flux. 

In order to calculate the effective thermal conductivity according to Eq. (3), one needs to know 
the phonon density of states, group velocities and relaxation times for all phonon branches. For 
Si at room temperature, these quantities have been computed from first principles [8,13-16]. We 
used the results of Ref. [13] presented in the form of thermal conductivity accumulation vs. 
MFP, which is particularly convenient for our purposes [22]. The calculated effective thermal 
conductivity for thermal grating relaxation in bulk Si is shown by the solid curve in Fig. 3(b). 
The effective conductivity approaches the bulk value at large grating periods and decreases at 
small periods. The calculation is valid under the assumption [26] that diffuse phonons with 
Λ<<L/2 account for most of the specific heat, which holds well at L>1 μm.  

In a thin membrane, the effective thermal conductivity is additionally reduced by boundary 
scattering. The classic formula for the effective MFP in a thin film was obtained (originally for 
electrons) by Fuchs [27]. The rigorous analysis of the thermal grating relaxation in the presence 
of boundary scattering is outside the scope of this report. We estimate the combined effect of the 
finite heat transfer distance in the transient grating measurement and the boundary scattering in 
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the membrane by using the reduced MFP from the Fuchs-Sondheimer theory [28] instead of the 
bulk MFP in our Eq.(3) [22]. While admittedly lacking mathematical rigor, this approach yields 
correct results in the limiting cases when boundary scattering either dominates or is negligible.  
In Fig. 3(b), alongside the curve for bulk Si, we show the calculated results for three membrane 
thicknesses. In the large L limit the effective thermal conductivity approaches a constant value 
determined by the membrane surface scattering.  For thinner membranes, the onset of the non-
diffusive effect is shifted towards shorter grating periods.  As can be seen in Fig. 3(a), the 
calculations for d=400 nm agree reasonably with the experiment given the uncertainties in the 
phonon MFP values obtained by different authors [13,14].  

The fact that the deviations from the Fourier law in phonon mediated-thermal conductivity occur 
at much larger distances than previously thought should change the way we think of micro-scale 
thermal transport. One immediate implication is that accurate measurements of bulk thermal 
conductivity may be impossible on micron-sized samples. We have seen that the commonly cited 
textbook values of an “average” phonon MFP are of little relevance in analyzing the onset of size 
effects in thermal conductivity. Perhaps a more useful parameter would be the “median thermal 
conductivity MFP” Λm, such that phonons with Λ > Λm contribute 50% to the bulk thermal 
conductivity. For Si at room temperature, calculations show this median MFP Λm to be ~0.5-1 
μm [13,14,16].  The behavior of Λm will be quite different from that of the “average” MFP. For 
example, impurity scattering makes all MFPs shorter; however, it affects primarily high-
frequency phonons. Therefore Λm may be in fact made larger by impurity scattering leading to 
larger size effects in semiconductor alloys compared to pure materials [5].  For the same reason, 
we may expect larger size effects in thermal transport in natural diamond than in isotopically 
pure diamond contrary to what has been traditionally believed [17]. 
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