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We predict a universal mid-gap bound state in topological superfluids, induced by either non-
magnetic or magnetic impurities in the strong scattering limit. This universal state is similar to the
lowest-energy Caroli-de Gennes-Martricon bound state in a vortex core, but is bound to localized
impurities. We argue that the observation of such a universal bound state can be a clear signature
for identifying topological superfluids. We theoretically examine our argument for a spin-orbit
coupled ultracold atomic Fermi gas trapped in a two-dimensional harmonic potential, by performing
extensive self-consistent calculations within the mean-field Bogoliubov-de Gennes theory. A realistic
scenario for observing universal bound state in ultracold 40K atoms is proposed.
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Topological superfluids are of great interest [1]. They
are promising candidates that host Majorana fermions
[2], which lie at the heart of topological quantum infor-
mation and computation, due to their exotic non-Abelian
exchange statistics [3–5]. To date, there are a number
of proposals for practical realizations of topological su-
perfluids, including p + ip superconductors [6, 7], sur-
faces of three-dimensional (3D) topological insulators [8–
10] or one-dimensional (1D) spin-orbit coupled nanowires
[11, 12] in proximity to an s-wave superconductor, and
two-dimensional (2D) [13–16] or 1D [17–19] spin-orbit
coupled atomic Fermi gases near Feshbach resonances.
All these proposals are appealing and are to be examined
experimentally. In fact, recent experimental results on
tunneling spectroscopy of semiconductor InSb nanowires
in a magnetic field placed in contact with a supercon-
ducting electrode [20] may already suggest the existence
of topological superfluids and Majorana fermions. How-
ever, unambiguous characterizations of topological prop-
erties of the nanowires are still missing.

In this Letter, we propose that a universal mid-gap
bound state, induced by strong non-magnetic or mag-
netic impurity scattering, could provide a clear signa-
ture for the existence of topological superfluids. In solid
state, impurities are widely known to serve as an im-
portant local probe that characterizes the quantum state
of hosting systems [21]. Individual impurities have used
to determine the superconducting pairing symmetry of
unconventional non-s-wave superconductors [22] and to
demonstrate Friedel oscillations on Be(0001) surface [23].
In strongly-correlated many-body systems, they may be
employed to pin one of the competing orders [24]. Here,
unique to topological superfluids, we predict that a sin-
gle impurity with sufficiently strong scattering strength
can create a universal mid-gap state bound to the im-

purity. It resembles the lowest-energy Caroli-de Gennes-
Martricon (CdGM) bound state inside a vortex core [25].
For small order parameters, where the bound state en-
ergy E is nearly zero, the wave-function of the universal
bound state is found to closely follow the symmetry of
that of Majorana fermions [16].

In our work, the emergence of universal impurity-
induced bound state is examined theoretically in an in-
teracting spin-orbit coupled ultracold atomic Fermi gas
in 2D harmonic traps [16]. We perform numerically ex-
tensive self-consistent calculations by using fully micro-
scopic Bogoliubov-de Gennes (BdG) theory, to explore
the details of the universal bound state. This specific
choice of topological superfluids is motivated by the re-
cent realization of spin-orbit coupling in atomic Fermi
gases of 40K [26] and 6Li atoms [27]. Benefited from the
high controllability in interaction, geometry and purity
in cold-atom experiments, 2D spin-orbit coupled atomic
Fermi gases are arguably the best candidate for observing
the predicted universal bound state. Our results, how-
ever, should be applicable as well to various topological
superfluids that are believed to exist in solid state. We
propose a realistic scenario of creating universal bound
state in 40K atoms and discuss briefly the relevance of
our results to other solid state systems.

Mean-field BdG equation. — To start, we consider a
trapped 2D atomic Fermi gas with a Rashba-type spin-
orbit coupling and a Zeeman field h, which is believed to
be a topological superfluid when the Zeeman field exceeds
a threshold hc [16]. The model Hamiltonian of the system
is given by, H =

´

dr[H0(r) +HI(r) +Himp(r)], where

H0(r) =
∑

σ=↑,↓

ψ†
σHS

σ (r)ψσ +
[

ψ†
↑VSO(r)ψ↓ + H.c.

]

(1)

is the single-particle Hamiltonian density in the presence
of Rashba spin-orbit coupling VSO(r) = −iλ(∂y + i∂x),
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HI(r) = U0ψ
†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r) represents the inter-

action, and Himp(r) =
∑

σ=↑,↓ ψ
†
σV

σ
imp(r)ψσ describes

the potential scattering due to the impurity. Here, ψ†
↑,↓

are respectively the creation field operators for the spin-
up and spin-down atoms and, HS

σ (r) ≡ −~
2∇2/(2M) +

Mω2r2/2 − µ − hσz is the single-particle Hamiltonian
in a 2D harmonic trapping potential Mω2r2/2, in ref-
erence to the chemical potential µ. We have used the
standard s-wave contact interaction between atoms with
opposite spins, whose strength U0 is to be regularized
by the binding energy of the two-body bound state Ea

[16, 28]. For computational simplicity, we place an impu-

rity at origin and consider either a delta-like scattering
potential, V σ

imp(r) = V σ
impδ(r), or a gaussian-shape poten-

tial with width d, V σ
imp(r) = [V σ

imp/(πd
2)] exp[−r2/d2].

In the case of magnetic impurity, we take the potential
strength V ↑

imp = −V ↓
imp = −Vimp; while for non-magnetic

impurity, V ↑
imp = V ↓

imp = −Vimp. We have checked both
positive and negative values of Vimp and have observed
very similar results at large |Vimp|. Hereafter, we focus
on the case with Vimp > 0.

We solve the low-energy fermionic quasiparticles of
the model Hamiltonian by using the standard mean-field
BdG approach, HBdGΨη (r) = EηΨη (r), where

HBdG =











HS
↑ (r) + V ↑

imp(r) VSO(r) 0 −∆(r)

V †
SO(r) HS

↓ (r) + V ↓
imp(r) ∆(r) 0

0 ∆∗(r) −HS
↑ (r)− V ↑

imp(r) V †
SO(r)

−∆∗(r) 0 VSO(r) −HS
↓ (r)− V ↓

imp(r)











(2)

is the BdG Hamiltonian, Ψη (r) = [u↑η, u↓η, v↑η, v↓η]
T

and Eη are the Nambu spinor wave-functions and en-
ergies for quasiparticles, respectively. Within mean-
field, the order parameter takes the form ∆(r) =
−(U0/2)

∑

η[u↑ηv
∗
↓ηf(Eη) + u↓ηv

∗
↑ηf(−Eη)] and, is to be

solved self-consistently together with the atomic densi-
ties, nσ (r) = (1/2)

∑

η[|uση|
2 f(Eη) + |vση |2 f(−Eη)].

Here f (x) ≡ 1/
(

ex/kBT + 1
)

is the Fermi distribu-
tion function at temperature T . The chemical po-
tential µ, implicit in HS

σ (r), can be determined by
the total number of atoms N using the number equa-
tion

´

dr[n↑ (r) + n↓ (r)] = N . As the impurity is
placed at origin r = 0, the BdG Hamiltonian pre-
serves rotational symmetry. Therefore, we take ∆(r) =
∆(r) and decouple the BdG equation into different an-
gular momentum channels indexed by an integer m,
with which the quasiparticle wave functions become,
[u↑η(r), u↓η(r)e

iϕ, v↑η(r)e
iϕ, v↓η(r)]e

imϕ/
√
2π. By ex-

panding uση (r) and vση (r) in the basis of 2D harmonic
oscillators, the solution of BdG equation converts to a
matrix diagonalization problem. Numerically we have
to truncate the summation over energy levels η. This
is done by introducing a high energy cut-off Ec, above
which a local density approximation is used for high-lying
wave-functions [29]. We have checked that such a hybrid
procedure is numerically very efficient.

For the results presented here, we have solved
self-consistently the BdG equation for a cloud with
N = 400 atoms at zero temperature. In 2D har-
monic traps, it is convenient to use the Fermi ra-
dius rF = (4N)1/4

√

~/(Mω) and Fermi energy EF =

~
2k2F /(2M) =

√
N~ω as the units for length and en-

ergy, respectively. The strength of impurity scattering
potential V σ

imp will be measured in units of r2FEF . We
have taken an interaction parameter Ea = 0.2EF and
a spin-orbit coupling strength λkF /EF = 1. With these
parameters, the whole Fermi cloud becomes a topological
superfluid when the Zeeman field is larger than a thresh-
old hc ≃ 0.57EF [16]. Let us first consider the localized
impurities with a delta-like scattering potential V σ

impδ(r).

Emergence of universal impurity bound state. — Ac-
cording to Anderson’s theorem [30], a conventional s-
wave superfluid can barely be affected by non-magnetic
impurities. In contrast, magnetic impurities can break
time-reversal symmetry of superfluid and act as pair
breakers, leading to the appearance of mid-gap state -
the so-called Yu-Shiba state - which is bound to local-
ized impurities inside the pairing gap [31, 32]. The en-
ergy of such a mid-gap bound state is determined by
the strength of the impurity scattering potential Vimp.
As Vimp increases, the Yu-Shiba state moves from the
upper gap edge to the lower gap edge for the spin-up
atoms and moves oppositely for the spin-down atoms. In
the presence of Rashba spin-orbit coupling, we have con-
firmed numerically that the above statements continue
to hold, even under a Zeeman field, if the Fermi cloud
is not a topological superfluid. For a typical parameter
h = 0.2EF , with increasing the strength of magnetic im-
purity, we find that the position of the Yu-Shiba state
moves very quickly from one gap edge to the other.

In contrast, once the Zeeman field is beyond the thresh-
old hc so that the whole Fermi cloud becomes a topo-
logical superfluid, we observe entirely different behavior,
as revealed in Fig. 1. For non-magnetic impurities, an
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FIG. 1: (color online) Bound states induced by a non-
magnetic delta-like impurity (a) and by a magnetic delta-
like impurity (b), V σ

imp(r) = V σ
impδ(r), in a topological su-

perfluid at h = 0.7EF , as shown by the peaks in the to-
tal local density of state (LDOS) ρ(r,E) at kF r = 2. Here,
ρ(r,E) =

∑
σ ρσ(r, E) and ρσ(r, E) = (1/2)

∑
η[|uση|

2 δ(E −

Eη) + |vση|
2 δ(E + Eη)]. The dashed and dash-dotted lines

highlight the resonance peak position or the energy of bound
states. From bottom to top, the impurity strength increases
from Vimp = 0 to Vimp = 0.011r2FEF , in steps of 0.001r2FEF .
The curves are offset for clarity, except for the lowest curve
at Vimp = 0. (c) The energy of bound states as a function of
the impurity strength, in units of the gap parameter at the
trap center in the absence of impurity, ∆0 ≃ 0.307EF .

unexpected bound state appears from one gap edge as
the impurity strength is larger than a critical strength
Vimp & 0.004r2FEF . As Vimp increases, the bound state
moves towards, but never reaches zero energy. In fact,
its energy saturates quickly to E ≃ 0.11EF ≃ ∆2

0/EF ,
where ∆0 ≃ 0.307EF is the gap parameter at the trap
center in the absence of impurity. For magnetic impuri-
ties, the dependence of the position of the Yu-Shiba state
on the impurity strength is also strongly modified: at
large impurity scattering, the Yu-Shiba state now moves
to E ≃ ∆2

0/EF , nearly at the same energy as the new
bound state induced by strong non-magnetic impurities.
This coincidence in the energy of bound states clearly in-
dicates that in topological superfluids a universal bound
state emerges in the limit of strong impurity scattering.

Origin of the universal state. — The appearance of
bound states implies that the gap parameter would be
strongly depleted close to the impurity. In Fig. 2, we
examine the spatial profile of order parameter near the
impurity. For a weak non-magnetic impurity, as shown
in Fig. 2(a), the gap parameter is already strongly modi-
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FIG. 2: (color online) Gap parameter as a function of im-
purity strength Vimp (in units of r2FEF ), for a non-magnetic
impurity (a) and for a magnetic impurity. In the limit of
strong impurity scattering, the gap parameter has the same
spatial distribution, no matter the impurity is non-magnetic
or magnetic.

fied at Vimp & 0.004r2FEF . Being regarded as a scattering
potential for Bogoliubov quasiparticles [25], the gap pa-
rameter hence starts to accommodate a bound state. For
a weak magnetic impurity (Fig. 2(b)), the pair-breaking
effect is always significant enough to induce a Yu-Shiba
bound state, as anticipated. In the strong scattering
limit, it is remarkable that the gap parameter acquires
a universal spatial profile, despite the type and strength
of impurities. It is fully depleted at the impurity site
and has a very similar distribution as the gap parameter
inside a vortex core. Therefore, we anticipate that the
observed universal bound state would resemble the well-
known CdGM vortex-core bound states [25]. Indeed, the
energy of the universal impurity state, E ≃ ∆2

0/EF , is at
the same order as that of CdGM bound states.

Now, the formation of the universal bound state can
be easily understood from its analogy with the CdGM
vortex-core state. As the gap parameter is fully sup-
pressed at the impurity site, we have a local point de-
fect (i.e., vacuum) that is topologically trivial. Due to
the topological nature of the Fermi cloud away from
the impurity, there would be an interface between the
non-topological and topological components, which can
host a gapless Majorana edge state [33]. The observed
universal impurity state is precisely such a Majorana
edge mode. However, its energy is not exactly zero due
to the finite confinement of the system [34]. As de-
rived analytically by Stone and Roy [35] (see also Ref.
[34]), the dispersion relation of edge states in topologi-
cal superfluids with a confinement length ξ is given by
E(m) = −(m + 1/2)∆0/(kF ξ). By assuming a charac-
teristic length ξ ∼ ~vF /∆0 for the gap parameter distri-
bution [25], where vF is the Fermi velocity, we estimate
that E ∼ ∆2

0/EF , in good agreement with the observed
energy of the universal bound state.
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FIG. 3: (color online) The wave-function of the universal
bound state, induced by either non-magnetic or magnetic im-
purity in the strong scattering limit. The inset shows the lin-
ear contour of LDOS for spin-up and spin-down atoms near
the impurity site.
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FIG. 4: Loss of the universal bound state for an extended
impurity. Here, we take a gaussian-shape scattering potential,
V σ
imp(r) = [V σ

imp/(πd
2)] exp[−r2/d2], with width kF d = 0.5.

From bottom to top, the impurity strength increases from
Vimp = 0 to Vimp = 0.06r2FEF , in steps of 0.002r2FEF . Other
parameters are the same as in Fig. 1.

In Fig. 3, we examine the wave-function of the univer-
sal bound state. Indeed, it satisfies approximately the
symmetry uσ (r) = v∗σ (r), which should be obeyed by
zero-energy Majorana fermions. In the inset, we present
the LDOS close to the impurity site. The universal bound
state is clearly visible within the gap. Experimentally,
the LDOS may be measured through spatially resolved
radio–frequency (rf) spectroscopy [36], which provides a
cold-atom analog of the widely used scanning tunneling
microscope in solid state [37]. The wave-function of the
universal bound state can therefore be determined from
the real-space structure of LDOS within the gap.

Loss of university. — The universality of the impurity-
induced bound state can be lost if the impurity scattering
has a finite width. In this case, a hole will be created in

the strong impurity scattering limit, instead of a point
defect. Therefore, there are a series of edge states. The
wave-function and energy of these edge states would de-
pend critically on the shape and strength of the impurity
potential. In Fig. 4, we show the bound states induced by
a non-magnetic (a) and a magnetic (b) gaussian impurity,
with a finite width kF d = 0.5. It is readily seen that with
increasing the impurity strength the bound state never
approaches to a universal limit. We have checked that
for larger widths, the LDOS becomes very complicated,
as more and more bound states appear.

Experimental proposal. — We now show that ultra-
cold Fermi gases of 40K atoms is a potential candidate
for observing the predicted universal impurity-induced
bound state. A 3D spin-orbit coupled 40K Fermi gas was
recently realized at Shanxi university [26]. By loading
a pancake-like optical trap V (r, z) = M [ω2r2 + ω2

zz
2]/2

with trapping frequencies ωz ≫ ω [38] or using a deep
1D optical lattice [39], a 2D topological superfluid with
number of atoms N ∼ 1000 and size rF ∼ 100µm may
be prepared at the temperature about 10nK. It is conve-
nient to create the delta-like impurity potential by using
a dimple laser beam that has a sufficiently narrow beam
width d < 1µm [40], so that kFd ≪ 1. By suitably
tuning its frequency, the scattering potential caused by
the laser beam can be attractive or repulsive for different
spins. Thus, both non-magnetic and magnetic impurities
can be simulated. The resulting universal bound state
may be visualized by using the standard tool of spatially
resolved rf-spectroscopy. All the techniques required to
observe the predicted universal state are therefore within
the reach of current experiments.

Application to other solid state systems. — Our results
are apparently applicable to the triplet superconductor
Sr2RuO4. For the possible 1D topological superconduc-
tor reported recently in InSb nanowires [20], a strong
impurity potential would split the 1D topological super-
conductor into two. Therefore, at the impurity site we
anticipate two universal bound states, with precise zero-
energy. The observation of such a pair of zero-energy
Majorana fermions is an unambiguous identification of
the topological nature of InSb nanowires.

Conclusion. — We have investigated the non-magnetic
and magnetic impurity scattering in an atomic topolog-
ical superfluid and have predicted the existence of uni-
versal bound state for strong impurity scatterings. The
observation of such a universal bound state - via spatially
resolved radio-frequency spectroscopy - is a smoking-gun
proof of atomic topological superfluidity. Our prediction
seems within experimental reach and opens the way to
unambiguously characterizing the topological properties
of other solid-state systems, such as the unconventional
superconductor Sr2RuO4 and 1D topological supercon-
ductor of InSb nanowires.

Note added. — After completing this work, we were
aware a related non-self-consistent T -matrix calculation
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in 1D topological superconductors, which predicted a
bound state induced by non-magnetic impurities [41].
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