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We investigate the aging dynamics of amorphous SiO2 via molecular dynamics simulations of a
quench from a high temperature Ti to a lower temperature Tf . We obtain a microscopic picture
of aging dynamics by analyzing single particle trajectories, identifying jump events when a particle
escapes the cage formed by its neighbors, and by determining how these jumps depend on the waiting
time tw, the time elapsed since the temperature quench to Tf . We find that the only tw-dependent
microscopic quantity is the number of jumping particles per unit time, which decreases with age.
Similar to previous studies for fragile glass formers, we show here for the strong glass former SiO2

that neither the distribution of jump lengths nor the distribution of times spent in the cage are
tw-dependent. We conclude that the microscopic aging dynamics is surprisingly similar for fragile
and strong glass formers.

PACS numbers: 61.20.Lc, 61.20.Ja, 64.70.ph, 61.43.Fs

If a system is quenched from a high temperature Ti to
a lower temperature Tf below the glass transition, crys-
tallization is avoided and a glass is formed. The result-
ing out of equilibrium (aging) dynamics has been hotly
debated for the last decades and remains unclear [1, 2].
Most previous studies on the aging dynamics investigated
quantities which are averages over all particles in the
system, such as mean squared displacement, incoherent
intermediate scattering function, dynamic susceptibility,
and energy [3, 4]. On the other hand much less is known
about single particle dynamics during aging. For colloids,
Cianci et al. investigated the structure [5] and Yunker et
al. [6] focused on irreversible rearrangements as function
of waiting time tw. Warren and Rottler used computer
simulations to investigate single particle hopping events
for a binary Lennard-Jones mixture without shear as well
as for polymers with and without shear [7, 8]. To gain a
more complete picture of the microscopic processes dur-
ing aging, we study single particle hopping (jump) events
for the very different glass former SiO2. Whereas the sys-
tems of Warren and Rottler are fragile glass formers, SiO2

belongs to the class of strong glass formers [1].
We determine the number of jumping particles per unit
time, the jump length, and the time spent in a cage for a
wide range of waiting times tw and for several choices of
Ti and Tf . To study the aging dynamics of amorphous sil-
ica we carried out molecular dynamics (MD) simulations
using the BKS potential [9] for the particle interactions.
Starting from 20 independent fully equilibrated configu-
rations at high temperatures Ti ∈ {5000K, 3760K}, the
system is quenched instantaneously to lower tempera-
tures Tf ∈ {2500K, 2750K, 3000K, 3250K}. To keep the
temperature at Tf constant and to disturb the dynamics
minimally, the Nosé-Hoover thermostat was applied only
for the first 0.33 ns (NVT), and the simulation was con-
tinued in the NVE ensemble for 33 ns during which Tf

stayed constant. For more information on details of the
simulation see [4].
We focus on the microscopic dynamics at the lower

temperature Tf by analyzing the single particle tra-
jectories rn(t). During the production runs at Tf we
stored average positions rn(tl) and fluctuations σn(tl) =
√

r
2
n(tl)− (rn(tl))

2
for each particle n at times tl =

l × (0.00327 ns). Here (. . .) is a time average over
0.00327 ns which corresponds to 3200 MD steps and 2000
MD steps for the NVT and NVE simulation runs respec-
tively. We then use the resulting rn(tl) to identify jump
events. For example Fig. 1 shows the z-component of
rn(tl) for n = 315; rectangular boxes indicate identified
jumps. We define a particle n to undergo a jump if its
change in average position

∆rn = |rn(tl)− rn(tl−4)| (1)

satisfies

∆rn > 3σα (2)

where σα is the average fluctuation size for particle type
α ∈ {Si,O}. Since σα is intended to be a measure of aver-
age fluctuations during each particles rattling within its
cage of neighbors, we first determine the estimate σ2

est,α

by averaging (σn(tl))
2
over all times tl of a given simu-

lation run at Tf and over all particles of the same type
α. We then determine σα by redoing the average over
(σn(tl))

2
, but by averaging only over times for which

(σn(tl))
2
< 3σ2

est,α which roughly excludes jumps from
the average. Note that the definition of Eq. (2) is simi-
lar, but not identical to our analysis in [10, 11]. To ver-
ify that our results are independent of the details of the
jump definition, we replaced Eq. (2) with ∆rn >

√
2σα

and found indeed qualitatively the same results as they
are presented here, for which we used Eq. (2) [12].
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FIG. 1. (Color online) As an example for the time-averaged tra-
jectory rn(tl) we show here the z-component zn for the oxygen
atom n = 315 for a single simulation run at Tf = 2500 K
which had been quenched from Ti = 3760 K. For clarity,
only a fraction of the simulation time is shown. In simula-
tion time units (1.0217 × 10−5 ns) we used the tw-borders
0, (1000 × 2m1 for m1 = 0, 1, . . . , 6), (64000 + 49500 × 2m2

for m2 = 0, . . . , 3), (64000 +m3 × 396000 for m3 = 2, . . . , 8).

We thus identify for all simulation runs all jump events
occurring during the production run at Tf . For each jump
event k we determine the particle nk jumping from aver-
age position (rnk

)
i
at time tik to average position (rnk

)
f

at time tfk (see in Fig. 1 dark green and cyan circles).

Our focus is on the dynamics of the system as it is
aging over time. We investigate it via the jump events
and their dependence on the waiting time tw, i.e. the
time elapsed since the temperature quench to Tf . We
divide the simulation run into waiting time windows, as
indicated in Fig. 1. For each jump event k with jump time
tik we determine the waiting time window which includes
tik (in Fig. 1 the light green waiting time window) and
assign to this waiting time window the waiting time tw
of the left border of the selected time window (in Fig. 1
red arrow).

We therefore obtain jump statistics for each waiting
time window starting at time tw and of duration ∆tw (see
Fig. 1). In Fig. 2 we show the number of distinct particles
jumping per observation time ∆tw as function of waiting
time tw [13]. We find for all investigated Tf and both Ti a

clear tw-dependence. With increasing waiting time
Np

∆tw
decreases following roughly a power law until equilibrium
is reached and

Np

∆tw
(tw) becomes independent of tw and

Ti. The power law exponents are approximately the same
for O- and Si-atoms in the range [−0.6/ns,−0.3/ns]. As
one might expect, the larger Tf the more particles jump
and the earlier the equilibrium time tjeq, i.e. the time

when
Np

∆tw
levels off. For comparison we include in Fig. 2

the equilibrium times tCeq determined via the intermediate

incoherent scattering function Cq(tw, tw+ t) (tCeq = t23 in
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FIG. 2. (Color online) Number of jumping particles Np per time
∆tw as function of waiting time tw for the case of O-atoms
and Ti = 5000 K (bold lines and symbols) and Ti = 3760 K
(dashed thin lines). To be able to include on the logarithmic
scale the data-point for the first time window at tw = 0, we

plot
Np

∆tw
(tw = 0) instead at tw = 0.005 ns. For comparison the

arrows indicate the equilibrium times tCeq (t23 in [4]).
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FIG. 3. (Color online) Jump length 〈∆R〉 (see Eq. (3) and
Fig. 1) as function of waiting time tw for the case of Ti = 5000 K
and O-atoms (bold lines and symbols) and Si-atoms (dashed thin
lines). Similar to Fig. 2 we plot 〈∆R〉(tw = 0) at tw = 0.005 ns.

[4]). We find tjeq ≈ tCeq, i.e. agreement between the mi-

croscopic equilibrium time tjeq (single particle jumps) and

the macroscopic equilibrium tCeq (Cq includes a particle
average).
Next we test whether the tw-dependence manifests it-

self also in a microscopic length scale. As sketched in
Fig. 1, we define the jump length of event k of particle
nk jumping at time tik from (rnk

)
i
to (rnk

)
f
to be

∆Rk =
∣

∣

∣
(rnk

)
f − (rnk

)
i
∣

∣

∣
. (3)

Similar to above, we investigate the tw-dependence of
〈∆R〉 by including in the average only events for which
tik belong to the same waiting time window. The result-
ing Fig. 3 shows that 〈∆R〉 for oxygen atoms (solid thick
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FIG. 4. (Color online) Distribution of the jump length P (∆R)
for the case of Ti = 5000 K, Tf = 2500 K and for O-atoms and
in the inset for Si-atoms. Different colors indicate waiting time
tw.

lines with symbols) is independent of tw (with the only
exception of the first time-window), and for silicon atoms
(dashed thin lines) 〈∆R〉 is only slightly tw-dependent.

This is in stark contrast to
Np

∆tw
of Fig. 2, which shows

strong tw-dependence. The tw-independence of ∆R holds
true even for the distribution P (∆R), both for O- and for
Si-atoms, as shown in Fig. 4 for the case of Ti = 5000 K,
Tf = 2500 K. We find similar results for all other in-
vestigated Ti and Tf . Consistent with Fig. 3, we find
only tw-dependence for tw / 0.02 ns (which corresponds
in an experiment to the undetectable instant of an in-
finitely fast quench). For tw > 0.02 an additional peak
occurs at ∆R ≈ 0 which is mostly due to reversible jumps
(as defined in [10]). Furthermore we find exponential
tails P (∆R) ∼ exp (−∆R/Rdecay) with Rdecay ≈ 0.8 and
0.3 Å for O- and Si-atoms respectively (similar to the re-
sults for a binary Lennard Jones mixture [7]).
With the conclusion from Figs. 3 and 4 that the length

scale ∆R is tw-independent, we investigate next the time
scales associated with the single particle jumps. We de-
fine the duration of a jump event k to be

∆tkd = tfk − tik (4)

(see Fig. 1) and the time between successive jumps of the
same particle

∆tkb = tik+1 − tfk (5)

that means the time spent in the cage before the same
particle jumps again (see Fig. 1). The resulting 〈∆td〉
and 〈∆tb〉 are shown in Fig. 5. The time between jumps
〈∆tb〉 is several magnitudes larger than 〈∆td〉. For com-
parison with 〈∆tb〉 we include arrows on the right to
indicate tCq

r (tw = 23.98 ns) of [4], which is defined to
be the time for which Cq(tw, tw + tCq

r ) = 0.625. Since
〈∆tb〉 > tCq

r , we conclude that 〈∆tb〉 is characterizing α-
relaxation. As above, we determined the tw-dependence
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FIG. 5. (Color online) We show here average jump duration
〈∆td〉 (lower four curves) and time between successive jumps of
the same particle 〈∆tb〉 (top four curves) using the definitions of
Eq. (4) and Eq. (5) and Fig. 1. The arrows on the right indicate
tCq
r (tw = 23.98 ns) of [4]. We include ∆td(0 ns) and ∆tb(0 ns)
at tw = 0.005 ns.

by averaging ∆tkd and ∆tkb for all jump events k for which
tik belongs to the same waiting time window. By choos-
ing this definition of 〈∆tb〉 we prevent artifacts due to
the different time window sizes, because only tik (instead
of ∆tkb) is required to be in the time window of considera-
tion. For large tw, however, the finite simulation run time
ttot = 33.33 ns, causes 〈∆tb〉 to decrease for waiting times
tw ' (ttot − ∆tb). Ignoring this ttot-specific decrease,
we therefore obtain the surprising result that 〈∆tb〉 is
independent of tw. This independence of tw holds not
only for the average 〈∆tb〉, but even for the whole dis-
tribution P (∆tb), as shown in Fig. 6. Also in Fig. 6 we
notice that P (∆tb) ∼ ∆t−1

b at Tf = 2500 K, whereas
P (∆tb) ∼ exp (−∆tb/tdecay) at Tf = 3250 K. In Fig. 7
we show how P (∆tb) plotted versus ∆tb changes with
the final temperature, for a fixed tw = 8.75 ns. We ob-
serve that at intermediate temperatures, i.e. Tf = 2750 K
and Tf = 3000 K, there is a crossover from power law to
exponential decay. For comparison we include in Fig. 7
the same arrows as in Fig. 2, which indicate the equilib-
rium times tCeq. The crossover time occurs approximately

at the same time when
Np

∆tw
(tw) and Cq(tw, tw + t) reach

equilibrium. A similar crossover has been observed for
kinetically constrained models (see Fig. 10 of [14]) and
for a binary Lennard-Jones mixture (see Fig. 2 of [15]).

In summary, we obtain the following microscopic pic-
ture of aging: both the distribution of jump length and
the distribution of times spent in the cage P (∆tb) are
independent of waiting time tw (similar to the results
of Warren and Rottler [7, 8]). Instead the only tw-
dependent microscopic quantity is the number of jump-
ing particles per time, which decreases with increasing tw
(similar to the results of Yunker et al. [6]). This is con-
sistent with the first hop time results reported in [7, 8].
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FIG. 6. (Color online) Distribution of times between jumps
P (∆tb) for O-atoms, Ti = 5000 K and for Tf = 2500 K and
in the inset for Tf = 3250 K. Different symbols (and colors)
correspond to different waiting times tw.
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FIG. 7. (Color online) P (∆tb) for fixed tw = 8.75 ns, Ti =
5000 K and for O-atoms as log-log plot in the main figure
and as log-lin plot in the inset. Different symbols (and colors)
correspond to different final temperature Tf . Dashed lines are
power law fits with exponents −1.0,−0.9,−0.6,−0.3 and dot-
dashed lines are exponential fits P (∆tb) ∼ exp (−∆tb/tdecay)
with tdecay = 10, 6, 2, 0.5 ns for Tf = 2500, 2750, 3000, 3250 K
respectively. As in Fig. 2, we include for comparison ar-
rows which indicate the equilibrium times tCeq [4]. For clarity,
P (∆tb) has been shifted by a factor of 10−1/10−3/10−5 for
Tf = 2750/3000/3250 K respectively.

We plan to investigate in the near future spatial correla-
tions of these jumps [11, 16]. In agreement with kineti-
cally constrained models P (∆tb) shows a crossover from
power law to exponential decay [14]. Our results for the
strong glass former SiO2 are surprisingly similar to the
fragile glass former results [7, 8].
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