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Abstract

We experimentally demonstrate a simple and robust protocol for the detection of weak radio-

frequency magnetic fields using a single electron spin in diamond. Our method relies on spin

locking, where the Rabi frequency of the spin is adjusted to match the MHz signal frequency. In a

proof-of-principle experiment we detect a 7.5MHz magnetic probe field of ∼ 40 nT amplitude with

< 10 kHz spectral resolution. Rotating-frame magnetometry may provide a direct and sensitive

route to high-resolution spectroscopy of nanoscale nuclear spin signals.

PACS numbers: 76.70.-r, 76.30.Mi, 03.65.Ta, 07.55.Ge
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Quantum systems have been recognized as extraordinarily sensitive detectors for weak

magnetic and electric fields. Spin states in atomic vapors [1] or flux states in superconducting

quantum interference devices [2], for example, offer among the best sensitivities in magnetic

field detection. Trapped ions [3] or semiconductor quantum dots [4] are investigated as

ultrasensitive detectors for local electric fields. The tiny volume of single quantum systems,

often at the level of atoms, furthermore offers interesting opportunities for ultrasensitive

microscopies with nanometer spatial resolution [5–7].

Sensitive detection of weak external fields by a quantum two-level system is most com-

monly achieved by phase detection: In Ramsey interferometry, a quantum system is prepared

in a superposition 1√
2
(|0〉+ |1〉) of states |0〉 and |1〉, and then left to freely evolve during

time τ . During evolution, state |1〉 will gain a phase advance ∆φ = τ∆E/~ over |0〉 (where
∆E is the energy separation between |0〉 and |1〉) that is manifest as a coherent oscillation

between 1√
2
(|0〉 ± |1〉) states. These oscillations can be detected either directly or by back-

projection onto |0〉 and |1〉. For spin systems, which are considered here, the energy splitting

sensitively depends on magnetic field B through the Zeeman effect ∆E = ~γB (where γ is

the gyromagnetic ratio), allowing very small changes in B to be measured for spins with

long coherence times τ .

In its most basic variety, phase detection measures DC or low frequency (∼ kHz) AC

fields that fluctuate slower than τ ; in other words, the free evolution process effectively acts

as a low-pass filter with bandwidth ∝ τ−1. Spin echo and multi-pulse decoupling sequences

have been introduced to shift the detection window to higher frequencies while maintaining

the narrow filter profile [8, 9]. Going to higher frequencies is advantageous for two reasons:

Firstly, coherence times generally increase, allowing for longer evolution times and better

sensitivities. Additionally, spectral selectivity can be drastically improved. While multi-

pulse decoupling sequences work well for capturing / 1MHz signals [8], extending this range

to the tens or hundreds of MHz – an attractive frequency range for nuclear spin detection

– is impractical due to the many fast pulses required for spin manipulation. Moreover, the

response function of multi-pulse sequences has multiple spectral windows that complicate

interpretation of complex signals.

Presented here is a simple and robust method to directly detect≫ 1MHz magnetic signals

with high sensitivity and spectral selectivity. Our approach relies on spin locking [10–12]

and is illustrated in Fig. 1: In a spin-lock experiment, a resonant microwave field is applied
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in-phase with the coherent Larmor precession of the spin. In the picture of a reference

frame rotating at the Larmor frequency ω0 = ∆E/~ (rotating frame), the microwave field

appears as a constant field parallel to the spin’s orientation. In this frame of reference, the

spin is quantized along the microwave field axis with an energy separation of ~ω1 = ~γBmw
1

between states parallel and anti-parallel to the microwave field, where Bmw
1

is the amplitude

(ω1 the Rabi frequency) of the microwave field. If now an additional, weak rf magnetic

field whose frequency Ω matches the Rabi frequency is present, transitions between parallel

and anti-parallel states are induced at a rate set by the magnitude Brf
1

of the rf field [13].

Since Rabi frequencies can be precisely tuned over a wide MHz frequency range by adjusting

microwave power [14], the single electron spin can act as a wide range, narrow band, and

sensitive detector for rf magnetic fields.

In the following we consider in general terms the transition probability p between |x+〉
and |x−〉 states (see Fig. 1) in response to a coherent and to a stochastic rf magnetic probe

field. This situation is equivalent to the classical problem of a two-level system interacting

with a radiation field [15–17]. For the case of a coherent driving field Brf
1 e

iΩt oriented along

the z-axis (see Fig. 1), the transition probability p is given by [15, 16],

p = p0
Ω2

1

Ω2
1 + (Ω− ω1)2

sin2

(

√

Ω2
1
+ (Ω− ω1)2

τ

2

)

, (1)

where p0 ≤ 1 is the maximum achievable transition probability, Ω1 = γBrf
1 is the amplitude

of the rf field, and other symbols are collected in Table I. (If a detuning ω−ω0 were present,
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FIG. 1: Illustration of rotating frame magnetometry using the Bloch sphere: (a) An electron spin

is initialized into the |0〉 state and transferred into the coherent superposition |x+〉 = 1√
2
(|0〉 +

eiω0t|1〉). (b) A microwave field Bmw
1

eiω0t is applied in-phase with the spin precessing around the

z axis. (c) During sensing period τ , transitions are induced between |x+〉 and |x−〉 = 1√
2
(|0〉 −

eiω0t|1〉) states by weak radio-frequency fields BrfeiΩt if the rf frequency Ω matches the Rabi

frequency ω1 = γBmw
1

. (d) |x+〉 (|x−〉) states are transferred to detectable |0〉 (|1〉) polarization.

The transition probability |x+〉 ↔ |x−〉 is equal to the probability of measuring |1〉.
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Symbol Range Description

ω0 GHz Spin Larmor frequency

ω GHz Microwave frequency

Bmw
1 µT-mT Microwave amplitude

ω1 = γBmw
1

MHz Microwave amplitude (in units

of frequency); Spin Rabi frequency

Ω MHz RF frequency

Brf
1

nT-µT RF amplitude

Ω1 = γBrf
1 kHz RF amplitude (in units of frequency)

TABLE I: List of symbols.

ω1 would need to be replaced by the effective Rabi frequency ωeff =
√

ω2
1
+ (ω − ω0)2.) We

notice that Brf
1
will drive coherent oscillations between states, and that the spectral region

that will respond to Brf
1 is confined to either ω1±Ω1 or ω1±5.57/τ , whichever is larger [18].

This corresponds to a detector bandwidth set by either power or interrogation time.

Alternatively, for stochastic magnetic signals, the transition probability can be analyzed

in terms of the magnetic noise spectral density SB(ω) [15, 17],

p =
p0
2

(

1− e−τ/T1ρ

)

(2)

where T1ρ is the rotating frame relaxation time [10],

T−1

1ρ =
1

4
γ2

[

SBz
(ω1) + SBy

(ω0)
]

, (3)

and SBz
(ω1) and SBy

(ω0) are the magnetic noise spectral densities evaluated at the Rabi

and Larmor frequencies, respectively, and z and y are given according to Fig. 1. Thus,

measurements of T1ρ for different ω1 can be used to map out the spectral density [19, 20].

Eq. (2) only applies for uncorrelated magnetic noise (correlation time τc < τ). A more

general expression that extends Eq. (3) to an arbitrary spectral density is discussed in Ref.

[15].

Eqs. (1-3) describe the general response of an ideal two-level system in the absence

of relaxation and inhomogeneous line broadening. Regarding relaxation we note that the

contrast p0 will be reduced to p0e
−τ/T1ρ for long evolution times τ & T1ρ, where T1ρ is the
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rotating frame relaxation time due to magnetic fluctuations in the sensors’ environment

[Eqs. (2,3)]. Thus, relaxation imposes a limit on the maximum useful τ , which in turn

limits both sensitivity (see below) and minimum achievable detection bandwidth.

Line broadening of the electron spin resonance (ESR) transition can be accounted for by

a modified transition probability p̃ that is averaged over the ESR spectrum q(ω0) [15],

p̃ =

∫ ∞

0

dω0q(ω0)p(ω0), (4)

where q(ω0) is normalized to unity. p(ω0) is given by Eq. (1) and depends on ω0 through

the effective Rabi frequency ωeff =
√

ω2
1 + (ω − ω0)2. As an example, if q(ω0) is a Gaussian

spectrum with a linewidth sigma σω0
and center frequency detuned by ∆ω0 = ω − ω0 from

the microwave frequency ω, the associated linewidth of the rotating-frame spectrum is

σω1
≈ σω0

[

∆ω2
0

ω2
1

+
σ2
ω0

4ω2
1

]1/2

. (5)

Inhomogeneous broadening of the ESR spectrum therefore leads to an associated inhomoge-

neous broadening of the rotating-frame spectrum that is scaled by
σω0

2ω1

or ∆ω0

ω1

, respectively.

Since ω1 ≫ σω0
,∆ω0, narrow linewidths can be expected even in the presence of a significant

ESR linewidth.

Finally, we can estimate the sensitivity towards detection of small magnetic fields. For

small field amplitudes Ω1 < τ−1 the transition probability [Eq. (1)] reduces to p ≈ p0
1

4
Ω2

1τ
2.

Assuming that the transition probability is measured with an uncertainty of σp (due to

detector noise), we obtain a signal-to-noise ratio (SNR) of SNR = p
σp

= p0
4σp

Ω2
1
τ 2. The

corresponding minimum detectable field Bmin = Ω1/γ (for unit SNR) is

Bmin =
2

γτ

√

σp

p0
. (6)

Eq. (6) outlines the general strategy for maximizing sensitivity: τ should be made as long

as possible, σp should be reduced (by optimizing read-out efficiency), and p0 should be made

as large as possible (by keeping τ < T1ρ and avoiding inhomogeneous broadening) [18].

We demonstrate rotating-frame magnetometry by detecting weak (nT-µT) rf magnetic

fields using a single nitrogen-vacancy defect (NV center) in an electronic-grade single crystal

of diamond [21]. The NV center is a prototype single spin system that can be optically

initialized and read-out at room temperature [22] and that has successfully been implemented

in high-resolution magnetometry devices [7, 23, 24]. Following Fig. 1, we initialize the NV
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spin (S = 1) into the |0〉 (mS = 0) state by optical pumping with a ∼ 1µs green laser

pulse, and transfer it into spin coherence |x+〉 (where |1〉 corresponds to mS = +1) using an

adiabatic half-passage microwave pulse [10]. The spin is then held under spin-lock during τ

by a microwave field of adjustable amplitude. After time τ , the state is transferred back to |0〉
(or |1〉) polarization, and read out by a second laser pulse using spin-dependent luminescence

[22]. The final level of fluorescence (minus an offset) is then directly proportional to the

probability p of a transition having occurred between |x+〉 and |x−〉. Precise details on

experimental setup and microwave pulse protocol are given as Supplemental Material [18].

In a first experiment, shown in Fig. 2, we demonstrate the driving of coherent oscillations

between parallel and anti-parallel states. For this purpose, the microwave amplitude was

adjusted to produce a Rabi frequency of 7.5MHz, and a small rf probe field of the same

frequency was superimposed. The transition probability p was then plotted for a series of

interrogation times τ . The period of oscillations allows for a precise calibration of the rf

magnetic field, which in this case was Brf
1 = Ω1/γ = 1.65µT. While one would expect p to

oscillate between 0 and 1, this probability is reduced because we mainly excite one out of

the three hyperfine lines of the NV center (see below). The decay of oscillations is due to

inhomogeneous broadening of the ESR linewidth and a slight offset Ω−ωrf between RF and

Rabi frequencies [18].

Fig. 3 presents a spectrum of the transition probability up to microwave amplitudes

ω1/2π of 11MHz with the same rf probe field present. A sharp peak in transition probability

is seen at 7.5 MHz (marked by ⋆), demonstrating that the electron spin indeed acts as a

spectrally very selective rf magnetic field detector. Inset (c) plots the same 7.5 MHz peak for

longer evolution times and weaker probe fields, revealing that for long τ , fields as small as
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FIG. 2: Coherent oscillation between |x+〉 and |x−〉 states induced by a rf probe field of Brf
1 =

1.6µT. Solid line is a fit to a decaying sinusoid [18]. Ω and ω1 are both 2π · 7.5MHz. Symbols are

explained in Table I.
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FIG. 3: (a) Optically-detected electron spin resonance (ESR) spectrum of one of the NV centers

used for experiments. Dots are data, solid lines are Gaussian fits. mI = ±1, mI = 0 indicate

hyperfine lines (a = 2.2MHz) associated with the 14NV nuclear spin (I = 1). Microwave frequency

used in spin-lock experiments was always centered on the mI = −1 line, indicated by an arrow.

DC bias field was 17mT. (b) Rotating-frame spectrum with 7.5 MHz probe field present (feature

⋆). Other features are explained with Fig. 4. Evolution time was τ = 15 µs. (c) High-resolution

spectra of the main peak (⋆) for longer evolution times and weaker probe fields. Dots are data,

solid lines are Gaussian fits. Linewidths are full width at half maximum. Numbers indicate Brf
1

and τ . Baseline noise of the 41-nT spectrum corresponds to 8 nT (σp = 0.020), and an integration

time of 840 s per point was used.

about 40 nT (1.1 kHz) can be detected and linewidths less than 10 kHz (0.13%) are achieved.

For comparison, the detection bandwidth [2× 5.57/τ , see Eq. (1)] is 3.2 kHz for the 41-nT-

spectrum and 8.8 kHz for the 82-nT-spectrum, in reasonable agreement with the experiment.

The ∼ 700 kHz linewidth of the ESR transition [Fig. 3(a)] translates into an inhomogeneous

broadening of about 18 kHz [Eq. (5)], which is somewhat higher than the experiment (since

the ESR linewidth is likely overestimated). The narrow spectra together with little drift in

line position furthermore underline that power stability in microwave generation (a potential

concern with spin-locking) is not an issue here.

Several additional features can be seen in the spectrum of Fig. 3. The increase in p below

1MHz (marked by �) can be attributed to nearby 13C diamond lattice nuclear spins (I = 1

2
,

1% natural abundance) with hyperfine couplings in the 100’s of kHz range, causing both
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spectral broadening and low frequency noise. The feature (⋄) appearing at ∼ 6MHz is of

unknown origin; since it is absent for NV centers composed of the 15N nuclear isotope it is

probably related to the nuclear quadrupole interaction of 14N [18]. The peak at ∼ 7.3MHz

(•) finally is a replica of the main 7.5MHz peak (⋆) associated with the mI = 0 nuclear

14NV spin sublevel: Since the microwave field excites all three hyperfine lines [see Fig. 3(a)],

the rotating-frame spectrum is the stochastic thermal mixture of three different Larmor

transitions with different effective Rabi frequencies. Only two out of three peaks are visible

in Fig. 3; all three peaks can be seen in a higher resolution spectrum shown in Fig. 4(a).

This presence of hyperfine lines is undesired, as it can lead to spectral overlap and generally

complicates interpretation of the spectrum.

In Fig. 4 we show how this complexity can be removed using spin state selection [25]. For

this purpose, we invert the electronic spin conditional on the 14N nuclear spin state before

proceeding with the spin-lock sequence. Conditional inversion is achieved by a selective

adiabatic passage over one hyperfine line. In the spectrum this leads to selective inversion

of peaks associated with that particular nuclear spin state. Fig. 4(b) shows the resulting

spectra for all three sublevels. By linear combination of the three spectra (or by subtraction

from the non-selective spectrum) we can then reconstruct separate, pure-state spectra for

each mI sublevel. Fig. 4(c) shows that spin state selection is very effective in removing

the hyperfine structure in the spectrum. We note that other schemes could also be used,
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FIG. 4: (a) Rotating-frame spectrum showing the three peaks associated with mI = −1(⋆), mI =

0(•), and mI = 1(H). Solid line is a calculation based on Eq. (4) and the EPR spectrum shown in

Fig. 3(a). Parameters are identical to Fig. 3 except for Ω/2π = 8MHz. (b) Spectra as-recorded

using spin state selection. (c) Linear recombination of pure-state spectra from data in (b). Solid

line is the calculated response.
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FIG. 5: Relaxation time measurements for bulk (black squares and blue circles) and shallow

implanted (5 nm deep, red triangles) NV centers show approximately T1-limited behavior.

such as initialization of the nuclear spin by optical pumping [26] or more general spin bath

narrowing strategies [27].

Finally, we have determined the baseline magnetic noise spectral density SB(ω) for two

representative NV centers using relaxation time measurements. Fig. 5 plots T1 and T1ρ decay

curves for a bulk and a shallow-implanted (∼ 5 nm) NV center [21]. From the T1 measure-

ment we infer S
1/2
B (ω0) =

√

2/(γ2T1) ≈ 0.14 nT/
√
Hz (per magnetic field orientation), evalu-

ated at ω0/2π = 3.2GHz. From T1ρ measurements we obtain S
1/2
B (ω1) ≈ 0.20−0.30 nT/

√
Hz,

evaluated at ω1/2π = 7MHz. Thus, for these experiments we conclude that S
1/2
B (ω1) is sim-

ilar, if slightly higher than S
1/2
B (ω0), and measurements are approximately T1-limited. Since

T1 itself is likely limited by thermal phonons and could be enhanced to < 1 pT/
√
Hz by going

to cryogenic temperatures [28], there is scope for further improvement at lower temperatures.

In conclusion, we have demonstrated how a single electronic spin can be harnessed for

radio-frequency magnetic field detection with high sensitivity and excellent spectral resolu-

tion. Our protocol relies on spin-locking and is found to be robust and simple, requiring a

minimum of three microwave pulses. Although the radio-frequency range addressed in our

demonstration experiment was limited to roughly 0 − 11MHz by efficiency of microwave

delivery, it is easily extended to several hundred MHz using more sophisticated circuitry,

such as on-chip microstrips [14].

We anticipate that rotating-frame magnetometry will be particularly useful for the de-

tection and spectral analysis of high-frequency signals in nanostructures, such as in small

ensembles of nuclear and electronic spins. For example, the magnetic stray field of a single

proton spin at 5 nm distance is on the order of 20 nT [5]. These specifications are within

reach of the presented method and engineered shallow diamond defects [21, 29], suggesting

that single nuclear spin detection could be feasible. In contrast to other nanoscale mag-
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netic resonance detection methods, such as magnetic resonance force microscopy [30] single

electron spin sensors are ideally suited for high-resolution spectroscopy applications because

they operate without a magnetic field gradient.

The authors gratefully acknowledge financial support through the NCCR QSIT, a compe-

tence center funded by the Swiss NSF, and through SNF grant 200021 137520/1. We thank

K. Chang, J. Cremer, R. Schirhagl, and T. Schoch for the help in instrument setup, sam-

ple preparation and complementary numerical simulations. C. L. D. acknowledges support

through the DARPA QuASAR program.

∗ Electronic address: degenc@ethz.ch

[1] D. Budker, and M. Romalis, Nat. Phys. 3, 227 (2007).

[2] T. Ryhanen, H. Seppa, R. Ilmoniemi, and J. Knuutila,

J. Low Temp. Phys. 76, 287-386 (1989).

[3] R. Maiwald et al., Nature Physics 5, 551 (2009).

[4] A. N. Vamivakas et al., Phys. Rev. Lett. 107, 166802 (2011).

[5] C. L. Degen, Appl. Phys. Lett. 92, 243111 (2008).

[6] M. Gierling et al., Nat. Nanotechnol. 6, 446-451 (2011).

[7] M. S. Grinolds et al., arXiv:1209.0203 (2012).

[8] G. De Lange, D. Riste, V. V. Dobrovitski, and R. Hanson,

Phys. Rev. Lett. 106, 080802 (2011).

[9] S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, Nature 473, 61-65 (2011).

[10] C. P. Slichter, Principles of Magnetic Resonance, (Springer, Heidelberg, 1996).

[11] J.-M. Cai, F. Jelezko, M. B. Plenio, A. Retzker, arXiv:1112.5502 (2011).

[12] M. Hirose, C. D. Aiello, and P. Cappellaro, arXiv:1207.5729 (2012).

[13] A. G. Redfield, 98, 1787-1809 (1955).

[14] G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom,

Science 326, 1520-1522 (2009).

[15] F. W. Cummings, Am. J. Phys. 30, 898 (1962).

[16] I. I. Rabi, Phys. Rev. 51, 0652-0654 (1937).

[17] M. C. Wang, and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945).

10

mailto:degenc@ethz.ch
http://dx.doi.org/10.1038/nphys566
http://dx.doi.org/10.1007/BF00681735
http://dx.doi.org/10.1038/nphys1311
http://dx.doi.org/10.1103/PhysRevLett.107.166802
http://dx.doi.org/10.1063/1.2943282
http://dx.doi.org/10.1038/NNANO.2011.80
http://arxiv.org/abs/1209.0203
http://dx.doi.org/10.1103/PhysRevLett.106.080802
http://dx.doi.org/10.1038/nature10010
http://arxiv.org/abs/1112.5502
http://arxiv.org/abs/1207.5729
http://dx.doi.org/10.1103/PhysRev.98.1787
http://dx.doi.org/10.1126/science.1181193
http://dx.doi.org/10.1119/1.1941846
http://dx.doi.org/10.1103/PhysRev.51.652
http://dx.doi.org/10.1103/RevModPhys.17.32


[18] See Supplemental Material accompanying this manuscript.

[19] J. Bylander et al., Nat. Phys. 7, 565-570 (2011).

[20] N. Bar-Gill et al., Nat. Commun. 3, 858 (2012).

[21] B. K. Ofori-Okai et al., Phys. Rev. B 86, 081406 (2012).

[22] F. Jelezko, and J. Wrachtrup, phys. stat. sol. (a) 203, 3207 (2006).

[23] G. Balasubramanian et al., Nature 455, 648 (2008).

[24] L. Rondin et al., Appl. Phys. Lett. 100, 153118 (2012).

[25] L. Duma, S. Hediger, A. Lesage, and L. Emsley, J. Magn. Reson. 164, 187-195 (2003).

[26] V. Jacques et al., Phys. Rev. Lett. 102, 057403 (2009).

[27] P. Cappellaro, Phys. Rev. A 85, 030301 (2012).

[28] A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D. Budker,

Phys. Rev. Lett. 108, 197601 (2012).

[29] K. Ohno et al., Appl. Phys. Lett. 101, 082413 (2012).

[30] M. Poggio, and C. L. Degen, Nanotechnology 21, 342001 (2010).

11

http://dx.doi.org/10.1038/NPHYS1994
http://dx.doi.org/10.1038/ncomms1856
http://dx.doi.org/10.1103/PhysRevB.86.081406
http://dx.doi.org/10.1002/pssa.200671403
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1063/1.3703128
http://dx.doi.org/10.1016/S1090-7807(03)00187-3
http://dx.doi.org/10.1103/PhysRevLett.102.057403
http://dx.doi.org/10.1103/PhysRevA.85.030301
http://dx.doi.org/10.1103/PhysRevLett.108.197601
http://dx.doi.org/10.1063/1.4748280
http://dx.doi.org/10.1088/0957-4484/21/34/342001

