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Quantum fluctuations in an anharmonic superconducting circuit enable frequency conversion of
individual incoming photons. This effect, linear in the photon beam intensity, leads to ramifications
for the standard input-output circuit theory. We consider an extreme case of anharmonicity in
which photons scatter off a small set of weak links within a Josephson junction array. We show
that this quantum impurity displays Kondo physics and evaluate the inelastic photon scattering
cross-sections. These cross-sections reveal many-body properties of the Kondo problem which are
hard to access in its traditional fermionic version.

Propagation of small-amplitude electromagnetic waves
through an optical system or a passive microwave circuit
is conventionally described in terms of transmission and
reflection amplitudes, or, equivalently, complex admit-
tances. Considered classically, the wave propagation can
be calculated using input-output theory [1, 2]. In the
absence of dissipation, the transmission t(ω) and reflec-
tion r(ω) amplitudes for a photon of frequency ω satisfy
the unitarity condition, |t(ω)|2 + |r(ω)|2 = 1. It is of-
ten tacitly assumed that this description applies in the
quantum limit too. While this is indeed true if the cir-
cuit is harmonic, the presence of anharmonic elements
modifies the picture qualitatively: a photon of energy ~ω
may “split” into several ones of smaller energy; unitarity
is violated in the elastic channel, |t(ω)|2 + |r(ω)|2 < 1.
The photon frequency conversion results in a finite dissi-
pative part of the admittances despite the system being
free of dissipative elements. These features appear in a
quantum circuit containing even a single or a small group
of anharmonic elements, a “quantum impurity”.

In this paper we consider the propagation of mi-
crowave photons (oscillations of charge and supercon-
ducting phase) along an array of Josephson junctions in-
terrupted by a capacitive element, see Fig. 1. If Joseph-
son energies were all large with respect to charging en-
ergies for each of the tunnel junctions, the system would
be effectively harmonic, and photon scattering off the
central capacitive link would be purely elastic. We will
rather assume the Josephson energy to be large for all
the junctions except for the two closest to the capaci-
tive link. These two junctions, together with the two
superconducting islands they single out, form a quantum
impurity which causes inelastic photon scattering. The
quantum impurity is of the Kondo variety [3–7], where
the two values of the polarization charge of the said two
islands play the role of the Kondo spin. However, photon
scattering is quite different from the electron scattering
in the conventional Kondo problem [8]. We find that the
photon elastic transmission and reflection coefficients, as
well as the total inelastic scattering cross-section γ(ω),
are related to the local “spin” susceptibility χzz(ω). We
then study the spectrum γ(ω′|ω) of photons at frequency

ω′ generated by inelastic processes from incoming pho-
tons at frequency ω. The spectrum peaks as a function
of ω′ at the Kondo energy scale. At ω − ω′ ≪ TK or
ω′ ≪ TK the behavior of γ(ω′|ω) provides direct access
to corrections to the Nozières fixed-point Hamiltonian.
We provide technical details in the Supplemental Mate-
rial (SM) [9].
Assuming that the superconducting gap is larger than

any other energy scale, the only relevant degrees of free-
dom are the number of Cooper pairs ni on island i and
the corresponding superconducting phase ϕi, obeying
[ϕi, nj ] = iδij . The array Hamiltonian is

H =
∑

i,j

[

2e2
(

ni − n0
i

) (

C
−1

)

ij

(

nj − n0
j

)

− E
ij
J cos(ϕi − ϕj)

]

,

(1)

where Eij
J and Cij are the matrices of Josephson couplings

and capacitances, respectively. We will assume nearest-
neighbor Josephson couplings, and ground- and nearest-
neighbor capacitances, whose values can be inferred from
Fig. 1. The gate-induced charge offset on the i-th island
is n0

i = Cg
i V

g
i /(2e) with V g

i and Ci being the gate voltage
and capacitance to the ground, respectively.
Away from the quantum impurity the array is uniform:

except for the quantum impurity islands, all Josephson
couplings are EJ , and all capacitances to the ground and
junction capacitances are Cg and C, respectively. Prop-
erties of the uniform array are controlled by two ratios,
EJ/ECg

and EJ/EC , of EJ and two charging energies,

EC = (2e)2/(2C) and ECg
= (2e)2/(2Cg). Typically

C/Cg ≫ 1 (it is ∼ 102 in [10]). That allows having the

RL

FIG. 1. Diagram of the system. The dotted box surrounds
the quantum impurity. See the text for further details.
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impedance of the array Z = [~/(2e)2]
√

2ECg
/EJ on the

order of the resistance quantum RQ = π~/(2e2), while

keeping the amplitude of phase slips A ∼ e−
√

32EJ/EC

exponentially small [10]. In an array of length L . a/A
(a is the array spacing) the Josephson energy can thus
be replaced by a quadratic term. In addition, in the long
wavelength limit we may use a continuum description for
the array [11] (except for the impurity) in terms of Bose
fields φℓ(x) and ρℓ(x) which represent, respectively, the
superconducting phase (whose gradient is proportional
to the electric current) and charge density (in units of
−2e per period of the array) in lead ℓ = L,R, obeying
[φℓ(x), ρℓ′ (x

′)] = iδℓℓ′δ(x − x′),

Hleads =
∑

ℓ=L,R

v

2π

∞
∫

0

{

g [∂xφℓ(x)]
2 +

1

g
[πρℓ(x)]

2

}

dx. (2)

The array is characterized by the velocity of plasmons
v = a

√

2EJECg
, and by g = RQ/(2Z). C does not af-

fect excitations of wavelengths well exceeding a
√

C/Cg.
Thus, the linear dispersion waveguide Hamiltonian (2)
is limited to frequencies within a bandwidth ω0 ∼
(v/a)

√

Cg/C (See SM, Sec. SM.A [9]).
Let us now turn to the quantum impurity, islands

L and R in the dotted box in Fig. 1. We derive its
low-energy Hamiltonian under the realistic assumptions
CLR ∼ C ≫ Cg

L, C
g
R ∼ Cg and CL, CR ∼

√

CCg (See

SM, Sec. SM.A [9]). When the charging energy Eimp
C =

(2e)2/[2(C̃L + C̃R)], with 1/C̃ℓ = 1/Cℓ + 1/
√

CCg, is

large with respect to the Josephson energies EL,R
J , the

total impurity charge nL + nR is quantized. If the gate
voltages are set to (Cg

LV
g
L + Cg

RV
g
R)/(2e) = 1, then to

lowest order in EL,R
J the islands are restricted to the

two charging states |0L, 1R〉 and |1L, 0R〉. We label
these two configurations by the states of a pseudo-spin,
Sz = (nL−nR)/2 = ±1/2, so that S+ = |1L, 0R〉〈0L, 1R|
and S− = (S+)

†. Finite EL,R
J enables switching between

these two states through virtual states with energies
of order Eimp

C . Eliminating these by a Schrieffer-Wolff
transformation leads to an effective low-energy Hamilto-
nian (See SM, Sec. SM.A [9]),

Himp =− ELR
J

2

{

e−i[φL(0)−φR(0)]S+ + ei[φL(0)−φR(0)]S−

}

+
(2e)2

Cg
λLRa [ρL(0)− ρR(0)]Sz −BzSz. (3)

Here

ELR
J =

EL
J E

R
J

Eimp
C

,
Bz

2e
=

(

1

2CLR
− λ2

LR

Cg

)

(Cg
LV

g
L − Cg

RV
g
R)

(4)

and λLR = CLCR/[(CL +CR)CLR] ∼
√

Cg/C ≪ 1. The
first term in Eq. (3) accounts for flips of the pseudo-spin,
which are accompanied by transfers of discrete charge
±2e between the two leads [12]. The second term is a

capacitive coupling between the impurity and the leads.
The third represents the effect of a gate voltage bias be-
tween the impurity islands. Hamiltonian (3) clearly in-
troduces anharmonicity into the system.
Applying the transformation H → U†HU with U =

e−i[φL(0)−φR(0)]Sz , the Hamiltonian acquires the form of
the spin-boson model with Ohmic dissipation [13, 14]:

HSB =
∑

λ=c,s

v

2π

∞
∫

0

{

[

∂xφ̃λ(x)
]2

+ [πρ̃λ(x)]
2

}

dx

−BzSz − ELR
J Sx − πvαρ̃s(0)Sz, (5)

where ρ̃s(x) = [αLρL(x)−αRρR(x)]/(α
√
g) and φ̃s(x) =√

g[αLφL(x) − αRφR(x)]/α are, respectively, the “spin
density” and its canonically conjugate momentum field.
The “charge density” and its conjugate field, ρ̃c(x) =

[αRρL(x)+αLρR(x)]/(α
√
g) and φ̃c(x) =

√
g[αRφL(x)+

αLφR(x)]/α, decouple from the impurity spin. The pa-
rameters αL,R and the coupling parameter α in Eq. (5)
are given by [15]

αL = αR =
1√
g
(1− λLR) , α2 = α2

L + α2
R. (6)

The spin-boson Hamiltonian (5) is equivalent [13, 14]
to the single-channel Kondo model [7], describing a local-
ized spin exchange-coupled to a bath of noninteracting
spin-1/2 fermions with bandwidth ω0,

HK =
∑

k,σ=↑,↓

vkc†k,σck,σ +
Iz
2L

Sz

∑

k,σ,k′,σ′

c†k,στ
z
σ,σ′ck′,σ′

+
Ixy
2L

S−

∑

k,σ,k′,σ′

c†k,στ
+
σ,σ′ck′,σ′ +H.c.−BzSz, (7)

where τ iσ,σ′ are the Pauli matrices, Iz = 2πv(1 − α/
√
2),

and Ixy = 2πaELR
J . Given the smallness of ELR

J [cf.
Eq. (4)], isotropic exchange (Ixy = Iz) corresponds to
α2 ≈ 2 (i.e., g ≈ 1, since λLR ≪ 1). The Toulouse point,
where the Kondo problem is equivalent to a noninteract-
ing resonant level [7, 11, 14], occurs at α = 1 (g ≈ 2);
this point of highly anisotropic exchange is hardly ac-
cessible in electronic realizations of the Kondo model.
Nevertheless, the Kondo couplings still flow to the same
strong-coupling fixed point as in the standard isotropic
case.
The Kondo impurity is locked into a singlet with its

environment at energies below the Kondo temperature
TK . We define it through the inverse static local impurity
susceptibility, T−1

K ≡ ∂〈Sz〉/∂Bz|Bz=T=0. To the leading
order in Ixy ∝ EL

JE
R
J it is given by [16]

TK = c(α)ω0

(

Ixy
2πaω0

)2/[2−α2]

, c(α) ∼ 1, (8)

with c(0) = 1. For the strong-coupling physics to show
up the leads should be longer than v/TK [17].
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We now examine the ac transport properties of the cir-
cuit. The quantum impurity causes elastic and inelastic
scattering of incoming microwave photons. The former
is characterized by the elastic T -matrix T̂ el

ℓ′|ℓ(ω), defined

as usual by the relation between the single photon prop-
agators in the presence and absence of the impurity (see
SM, Sec. SM.B [9]). It has the structure

−2πiT̂ el
ℓ′|ℓ(ω) =

(

rL(ω)− 1 tR(ω)
tL(ω) rR(ω)− 1

)

, (9)

where tℓ(ω) [rℓ(ω)] is the transmission [reflection] ampli-
tudes for a photon of frequency ω incoming in lead ℓ.
The equations of motion for the single photon propa-

gartors allow us to derive a relation

T̂ el
ℓ′|ℓ(ω) = (−1)δℓ,ℓ′−1ωαℓαℓ′χzz(ω), (10)

between all the elements of the elastic T̂ matrix and
the local dynamic differential spin susceptibility of the
Kondo problem (7), χzz(ω) = 〈〈Sz;Sz 〉〉 ω. Thus, a simple
ac transport measurement on this system yields the dy-
namic susceptibility of the Kondo model, which is hard
to access in the electronic realizations of the Kondo ef-
fect: in those systems charge transport is weakly-coupled
to the spin dynamics, whereas in our system Sz is actu-
ally the electric polarization of the quantum impurity.
An incoming electromagnetic wave will generate an ac
voltage difference (“magnetic field”) on the “spin”. The
impurity electric polarization will oscillate in response
[through χzz(ω)] and emit the scattered waves.
The frequency dependence of χzz at low temperatures

(T ≪ TK) is non-monotonic. We will concentrate on
small “magnetic fields” [cf. Eq. (4)], Bz ≪ TK , where
Kondo physics is most clearly manifested. The imagi-
nary part of χzz(ω) has a maximum at ω ∼ TK while
Re[χzz(ω)] alternates its sign. These features sharpen
up to width ∼ α2TK at α ≪ 1 [14]. At low frequency
ω ≪ TK and arbitrary α the susceptibility approaches a
real constant,

χzz(ω) = χ0

(

α,
Bz

TK

)[

1 + iπα2ωχ0

(

α,
Bz

TK

)]

, (11)

where χ0(α,Bz/TK) ≡ ∂〈Sz〉/∂Bz is the static local dif-
ferential susceptibility, with χ0(α, 0) = 1/TK . The coeffi-
cient of the dissipative, linear-in-frequency term, is fixed
by the Shiba relation [14, 18] (See SM, Sec. SM.C [9]). At
high frequencies, ω ≫ TK , Bz, we can use perturbation
theory in Ixy ∝ EL

J E
R
J to find [19]

χzz(ω) = i
π

4

f(α)

ω

(

TK

iω

)2−α2

, α > 1, (12)

where f(α) = −2 sin(πα2/2)Γ(1−α2)/{π[c(α)]2−α2}. At
α < 1 the imaginary part of Eq. (12) still describes
Im[χzz(ω)], while the real part is dominated by another
term, Re[χzz(ω)] ∼ TK/ω2. At ω ≫ TK , Bz, the pho-
ton reflection coefficient |rℓ(ω)|2 in the elastic channel

approaches 1, while the transmission coefficient |tℓ(ω)|2
scales as (TK/ω)2(2−α2) for α > 1 and as α4(TK/ω)2

for α < 1. The elastic scattering probabilities at the
Toulouse point α = 1 are plotted in Fig. 2.
Let us now turn to inelastic photon scattering. Using

Eq. (10), the total probability of an incoming photon to
be scattered inelastically is

γℓ(ω) = 1− |rℓ(ω)|2 − |tℓ(ω)|2 (13)

= 4πα2
ℓωIm [χzz(ω)]− 4π2α2

ℓα
2ω2 |χzz(ω)|2 .

This quantity would be zero for a harmonic system, but
is nonzero in general (See SM, Sec. SM.C [9]). Actu-
ally, for ω ≫ TK we may use Eq. (12) to find γℓ(ω) ∼
α4(TK/ω)2−α2

, which is parametrically larger than the
elastic transmission coefficient |tℓ(ω)|2 for any α. As
shown in Fig. 2, the total inelastic probability can reach
17% at the Toulouse point α = 1, and should increase
further upon increasing α.
The measurable characteristic of the inelastic processes

is the spectrum of emitted photons γℓ′|ℓ(ω
′|ω), where

γℓ′|ℓ(ω
′|ω)dω′ is the average number of photons in the fre-

quency interval [ω′, ω′+dω′] emitted into lead ℓ′ per each
incoming photon at frequency ω in lead ℓ (assuming the
incoming intensity is weak enough so that processes in-
volving two or more incoming photons can be neglected).
This quantity is a sum over the cross sections of all the
possible multiphoton inelastic processes where one of the
outgoing photons has frequency ω′, while integrating over
all the other outgoing photons. It can also be related to
local impurity correlators (See SM, Sec. SM.D [9]). En-
ergy conservation leads to the relation

∑

ℓ′=L,R

∞
∫

0

ω′γℓ′|ℓ(ω
′|ω)dω′ = ωγℓ(ω). (14)

For ω, ω′, ω − ω′ ≫ Bz, TK the spectrum γℓ′|ℓ(ω
′|ω)

can be found perturbatively in Ixy ∝ EL
J E

R
J (See SM,

Sec. SM.E [9]),

FIG. 2. Elastic transmission, elastic reflection, and total in-
elastic scattering probabilities at the Toulouse point α = 1
with left-right symmetry (hence the lead index ℓ was omit-
ted) and Bz = T = 0 (See SM, Sec. SM.D [9]). See the text
for further details.
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γℓ′|ℓ(ω
′|ω) = 4πα2

ℓα
2
ℓ′

ωω′

(

Ixy
4πa

)2
[

Im
[

χ̃hl
+−(ω − ω′)

]

(

θ(ω − ω′)
{

[1 + nB(ω
′)] [1 + nB(ω − ω′)]− nB(ω

′)nB(ω − ω′)
}

+θ(ω′ − ω)
{

nB(ω
′) [1 + nB(ω

′ − ω)]− [1 + nB(ω
′)]nB(ω

′ − ω)
})

+Im
[

χ̃hl
+−(ω + ω′)

]

{

nB(ω + ω′) [1 + nB(ω
′)]− [1 + nB(ω + ω′)] nB(ω

′)
}]

, (15)

where nB(ω) = 1/(eω/T −1) is the Bose distribution, and

χ̃hl
+−(ω) =

〈〈

eiαφ̃s(0); e−iαφ̃s(0)
〉〉 hl

ω
, calculated for vanish-

ing coupling to the impurity. The different terms in this
equation account for all the possible multiphoton scat-
tering processes. For example, the first term on the first
line describes a process where an incoming photon at
frequency ω is absorbed by the quantum impurity, which
in turn emits a photon at frequency ω′ < ω [hence the
stimulated emission factor 1 + nB(ω

′)], plus additional
photons whose energies sum up to ω − ω′. It can be
shown that the factors depending on ω − ω′ can be writ-
ten as the sum over the probabilities of distributing the
energy ω − ω′ among any number of photons (See SM,
Sec. SM.E [9]). At T = 0 Eq. (15) yields (for ω′ < ω)

γℓ′|ℓ(ω
′|ω) = π2α2

ℓα
2
ℓ′ f̃(α)

ω − ω′

ωω′

(

TK

ω − ω′

)2−α2

, (16)

with f̃(α) = sin[π(α2 − 1)/2]f(α). This result, together
with Eqs. (12)–(13), obeys the sum rule (14) to the lead-
ing order in TK/ω ≪ 1.

If any of the energies ω, ω′, or ω − ω′ becomes less
than TK , perturbation theory in Ixy is no longer valid.
To derive the behavior of γℓ′|ℓ(ω

′|ω) in these regimes,
let us start from the case when all the frequencies are
small, and the dynamics is governed by the strong cou-
pling fixed point. At low energies the impurity is screened
and disappears from the problem. According to the
Nozières Fermi-liquid description [7], it leaves behind (at
Bz = 0) local scattering potential and interaction be-
tween the fermions of Eq. (7), mediated by virtual fluc-
tuations of the Kondo impurity. Upon bosonization, the
leads are described by the first term of Eq. (5) while the
local potential and interaction acquire the form H2 ∼
v2ρ̃2s(0)/TK [20]. This is the lowest order term allowed by
symmetries; for example, the spin density ∝ ρ̃s(0) cannot
appear in odd powers due to the time reversal symmetry
of the Kondo model, representing the equivalence of the
two impurity states in Eq. (5) at Bz = 0. H2 is harmonic;
in order to study inelastic effects one needs to consider
higher-order terms. In the absence of magnetic field, a
quartic, four-photon term H4 ∼ v4ρ̃4s(0)/T

3
K is the low-

est anharmonic term allowed, while with magnetic field
three boson scattering, H3 ∼ Bzv

3ρ̃3s(0)/T
2
K , is possible.

Fermi’s golden rule then leads to (for ω′ < ω ≪ TK)

γℓ′|ℓ(ω
′|ω) = α2

ℓα
2
ℓ′

ωω′ (ω − ω′)
[

aB(α)B
2
z + aω(α) (ω − ω′)

2
]

T 6
K

(17)
(the coefficients aB,ω(α) are evaluated in the SM,
Sec. SM.F [9] for small α).
Returning to the high frequency regime ω ≫ TK , the

behavior near the edges of the spectrum in ω′ is the same
as for ω ≪ TK , since at ω ∼ TK a crossover, rather
than a singularity, occurs. Thus, while Eq. (16) applies
as long as both ω′, ω − ω′ ≫ TK , for small ω′ one has
γℓ′|ℓ(ω

′|ω) ∝ ω′, whereas for small ω − ω′ > 0

γℓ′|ℓ(ω
′|ω) = α2

ℓα
2
ℓ′

(ω − ω′)
[

a′B(α)B
2
z + a′ω(α) (ω − ω′)2

]

ω2T 2
K

(18)
(See SM, Sec. SM.F [9], for the small α values of a′B,ω(α)).

The leading dependence on ω − ω′ in Eqs. (17) and (18)
changes at Bz = 0, reflecting the higher symmetry of the
system. The resulting behavior is depicted in Fig. 3 at
the Toulouse point α = 1.
To conclude, we have considered the scattering of mi-

crowave photons propagating along an array of supercon-
ducting islands by a localized anharmonicity. We have

FIG. 3. The inelastic spectrum normalized by the total in-
elastic probability at the Toulouse point α = 1 with left-
right symmetry (hence the lead indices ℓ, ℓ′ were omitted),
for ω/TK = 10.0, and Bz = T = 0. The continuous line is the
exact result, see SM, Eqs. (S43) and (S48) [9]. The dashed
line corresponds to Eq. (16), valid for ω′, ω − ω′

≫ TK . See
the text for further details. The peak at ω′

∼ TK sharpens,
and a broad peak develops around ω − ω′

∼ TK for smaller
α; cf. SM, Figs. S2 [9].
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shown that, contrary to the assumptions of input-output
theory, linear response is typically dissipative, and inelas-
tic scattering is therefore significant. Photon scattering
provides direct access to the dynamics of quantum im-
purity. While we have concentrated on a Kondo system,
these conclusions should apply to other types of quan-
tum impurities. Finally we note that this and related
setups have been studied in the past. However, most
these works considered only equilibrium properties [3–
5]. Elastic scattering in this system in the limit α ≪ 1

was recently studied in Ref. 6. Inelastic scattering, whose
probability is small in that limit (See SM, Sec. SM.F [9]),
was ignored there.
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