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In the presence of time-reversal symmetry, quantum interference gives strong corrections to the
electric conductivity of disordered systems. The self-interference of an electron wavefunction trav-
eling time-reversed paths leads to effects such as weak localization and universal conductance fluc-
tuations. Here, we investigate the effects of broken time-reversal symmetry in a driven artificial
two-level system. Using a superconducting flux qubit, we implement scattering events as multi-
ple Landau-Zener transitions by driving the qubit periodically back and forth through an avoided
crossing. Interference between different qubit trajectories give rise to a speckle pattern in the qubit
transition rate, similar to the interference patterns created when coherent light is scattered off a
disordered potential. Since the scattering events are imposed by the driving protocol, we can control
the time-reversal symmetry of the system by making the drive waveform symmetric or asymmetric
in time. We find that the fluctuations of the transition rate exhibit a sharp peak when the drive
is time-symmetric, similar to universal conductance fluctuations in electronic transport through
mesoscopic systems.

At low temperatures, the conductivity of disordered
systems is strongly influenced by quantum interference
effects such as weak localization (WL) and universal con-
ductance fluctuations (UCF) [1, 2]. Weak localization is
due to constructive self-interference of an electron wave-
function traversing time-reversed paths, leading to an en-
hanced probability of back-scattering and therefore a re-
duction of the conductance. UCF describe the strong
fluctuations in conductance that occur as a function of
any parameter that changes the scattering configuration
[3–5]. The interference effects are highly sensitive to any-
thing that breaks time-reversal symmetry, such as a mag-
netic field applied perpendicularly to the motion of the
charge carriers. Studies of weak localization and UCF
thus provide a method for investigating effects related to
phase coherence, which has been used in a wide variety
of systems ranging from metals [6] and semiconductors
[7] to quantum dots [8–10] and graphene [11], and even
for the scattering of light off disordered media [12–14].

The presence of weak localization and UCF in such
widely varying systems shows the universality of the ef-
fect, occurring independently of the sample size, dimen-
sionality and the degree of disorder. In mesoscopic sys-
tems, there are typically a large number of scatterers,
giving millions of interfering paths that contribute to the
electron transport. In this work, we investigate the effect
of time-reversal symmetry on a driven artificial two-level
system in the few-scatterer limit. The scattering events
are implemented as Landau-Zener transitions by driv-
ing a qubit multiple times through an avoided crossing.
With both the number of scattering events and the time-
reversal symmetry imposed by the driving protocol, we
have control over the number of possible paths in the
system. In a configuration with only four scatterers, we
measure a sharp increase in the fluctuations of the qubit
transition rate when the drive waveform is made sym-

metric in time.

We use a superconducting flux qubit [15, 16], which
consists of a niobium loop interrupted by three Josephson
junctions [17], with a magnetic flux Φ threading the loop.
The clockwise and counterclockwise persistent currents
±IP, corresponding to the qubit’s diabatic states, are
tunnel coupled with strength ∆. The two-level Hamilto-
nian H = (−1/2)(∆σx +εσz) describes the qubit dynam-
ics, where ε = 2IPf , f ≡ Φ− Φ0/2 is the flux detuning,
Φ0 = h/2e the superconducting flux quantum, and σx
and σz are Pauli matrices. The qubit energy separation
E01 =

√
ε2 + ∆2 is therefore controlled by the flux Φ in

the loop [Fig. 1(a)].

We first discuss the concept of scattering events in a
driven two-level system. Starting at negative flux detun-
ing and with the qubit in its ground state, we apply a
large-amplitude flux signal that drives the qubit through
an avoided crossing and back again [Fig. 1(a)]. At the
first avoided crossing, the ground state |0〉 undergoes a
Landau-Zener transition and splits into a coherent super-
position of |0〉 and |1〉. The states evolve independently
until the second time they reach the avoided crossing,
where they interfere constructively or destructively de-
pending on the relative phase ϕ acquired between the
two transitions.

The Landau-Zener transitions and the qubit evolution
can be thought of as a phase-space analog of an optical
Mach-Zehnder interferometer [17]. Figure 1(b) shows the
energy evolution of the qubit during the drive, where
the interference phase ϕ = (1/h̄)

∫ t2
t1
E01(t) dt is given by

the shaded area between the two scattering events. The
setup is similar to the mesoscopic system of Fig. 1(c) in
the limit of very few scatterers. The qubit phase space
of Fig. 1(b) contains only two scatterers, two possible
trajectories and one interference phase. The problem can
be solved analytically, with the resulting qubit transition
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FIG. 1: Qubit trajectories during driven evolution. (a)
Energy-level diagram of a flux qubit. Driving the qubit
through the avoided crossing induces Landau-Zener transi-
tions between the two states. The states recombine when the
qubit is brought back through the avoided crossing, with the
final outcome depending on the phase accumulated during the
flux excursion. (b) Qubit transitions visualized as two scat-
tering events in a Mach-Zehnder interferometer setup. (c)
Illustration of a mesoscopic system with two paths related by
time-reversal symmetry. (d-e) Qubit transitions for a drive
waveform that brings the qubit through the avoided cross-
ing multiple times. The blue and red traces mark two (out
of eight) possible trajectories in the system. (d) When the
waveform is symmetric in time, the trajectories acquire the
same phases (since ϕ1 = ϕ3), and will interfere constructively.
(e) Without time-reversal symmetry, ϕ1 6= ϕ3.

rate showing oscillations as a function of the interference
phase ϕ [18].

We can increase the number of trajectories in our sys-
tem by driving the qubit back and forth through the
avoided crossing several times for each cycle of the driv-
ing waveform. This allows us to increase the complexity
of the system and move closer to the mesoscopic case
while still having a controlled, non-chaotic phase space.
Figure 1(d) shows the qubit being driven through the
avoided crossing two additional times, giving a total of
four scatters, three interference phases, and 23 = 8 possi-
ble paths. Note that the drive waveform is symmetric in
time. Qubit trajectories that are related by the temporal
symmetry will pick up the same phase during the driven
evolution, and they will therefore interfere constructively.
Examples of time-reversed paths are plotted in red and
blue in Fig. 1(d). We can easily break the time-reversal
symmetry by making the drive waveform asymmetric in
time, as shown in Fig. 1(e): the red and blue trajectories
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FIG. 2: Qubit transition rate as a function of the time-reversal
symmetry of the drive waveform. (a) Drive waveform for dif-
ferent values of the drive asymmetry parameter α. (b) Zoom-
in around the center region of (a); the waveform becomes
asymmetric in time when α 6= 0. (c) Measured transition
rate versus static flux detuning fdc and α. (d) Qubit energy
diagram. (e-f) Case when fdc > 0 (positions in (c) marked
by I and II); the qubit is driven through the avoided crossing
twice, resulting in Landau-Zener oscillations as a function of
the accumulated phase ϕ. (g) Case when fdc < 0 (position
III); here, the qubit is driven through the avoided crossing
four times, giving rise to an intricate interference pattern.

will acquire different phases since ϕ1 and ϕ3 are no longer
equal. The qubit thus provides a well-controlled test sys-
tem for investigating the effects of broken time-reversal
symmetry in the few-scatterer limit.

We implement the drive protocol using a biharmonic
signal [19],

f(t) = fdc +A1 cos(ωt+ α)−A2 cos(2ωt). (1)

We fix the frequency ω/(2π) = 125 MHz, the amplitude
A1 = 3 mΦ0 and the amplitude ratio A2/A1 = 0.55,
while the parameter α controls the waveform’s asym-
metry. The waveform is plotted in Fig. 2(a) for a few
different values of α, with Fig. 2(b) showing a magnifi-
cation around the time t = 0. Note that the function is
symmetric in time for α = 0 and becomes increasingly
asymmetric as α is increased.

The waveform’s period 2π/ω = 8 ns is comparable to
the qubit’s dephasing time Tφ ≈ 10 ns. This puts the dy-
namics in the quasiclassical regime [18], where coherence
is preserved within one period of the drive, but where
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multi-photon processes due to coherence over many pe-
riods are not resolved [17]. However, since the energy-
relaxation time T1 ≈ 20µs is much longer, consecutive
periods of the drive signal will lead to a build-up of
excited-state population. The process of reaching the
steady-state population follows an exponential time de-
pendence, which we characterize by a transition rate Γ.
In the relevant regime (Γ � 1/T1), we have Γ = 2W ,
where W is the probability (per unit time) of inducing
a qubit transition from |0〉 to |1〉 after one period of the
drive waveform [18].

The measurement procedure consists of three steps:
first, the qubit is cooled to its ground state using a 3-
µs cooling pulse [20]; next, we apply the drive signal to
induce qubit transitions; finally, the qubit state is read
out using a superconducting quantum interference de-
vice. By changing the length of the drive pulse and fit-
ting the measured qubit population versus pulse duration
to an exponential decay, we extract the transition rate Γ.
Figure 2(c) shows a measurement of Γ versus the static
flux detuning fdc and the asymmetry parameter α. The
static component fdc is used to shift the extrema of the
waveform relative to the avoided crossing. This is illus-
trated in Figs. 2(d-g), where we sketch the qubit energy
bands and the flux excursion for three values of fdc.

For positive fdc, only the negative dip of the bihar-
monic signal reaches the avoided crossing. This section of
the wave will generate two Landau-Zener transitions just
like in Fig. 1(a), resulting in a transition rate Γ that oscil-
lates as a function of the interference phase ϕ picked up
between the scattering events [shaded area in Figs. 2(e)].
At the maximum of Γ marked by I in Fig. 2(c), the drive
just barely reaches the avoided crossing, giving a phase
pickup of ϕ = π. As fdc is decreased, the flux excur-
sion between scattering events gets longer and the phase
pickup increases. The next maximum (point II) corre-
sponds to ϕ = 3π, and successive maxima occur when-
ever the interference phase equals odd integers of π. In
this simplified picture, we do not consider the phase ac-
cumulation during the positive part of the flux sweep,
which has a smaller influence on the resulting transition
rate due to the qubit’s comparatively short dephasing
time (Tφ ≈ 10 ns).

For negative fdc, the positive part of the biharmonic
signal reaches the avoided crossing, as illustrated in
Fig. 2(g). Depending on parameters, the waveform may
drive the qubit through the avoided crossing up to four
times per cycle, giving three interference phases. The
phase accumulation and the interference conditions vary
strongly with waveform shape, and this is the origin of
the clear fluctuations in Γ around point III in Fig. 2(c).
Coming back to the trajectories discussed in Figs. 1(d-
e), we can interpret the fluctuations in Γ as interfer-
ence from all possible paths generated by the scatter-
ing events. Note that the drive waveform is periodic in
time, so the number of possible scattering events is not
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FIG. 3: Fluctuations in the transition rate of a driven qubit.
(a) Measured transition rate vs flux detuning and drive asym-
metry α. (b) Transition rate averaged from −4 mΦ0 to 0 mΦ0.
The data does not show any dependence on the drive asym-
metry. (c) Standard deviation of the transition rate. The
fluctuations have a sharp peak at α = 0.

restricted to the four events discussed in Figs. 1(d-e).
Rather, interference occurs between all trajectories that
retain phase coherence, and the maximal number of paths
is ultimately set by the coherence time of the qubit.

Figure 3(a) shows a magnification of the region around
point III in Fig. 2(c). Despite involving only a few scat-
tering events, the plot shows a rich interference pattern as
a function of fdc and α. To make the connection to charge
transport in mesoscopic systems, we identify the qubit’s
transition rate Γ with the electric conductance, whereas
the time-symmetry breaking parameter α corresponds to
the magnetic field. We calculate the mean and the stan-
dard deviation of Γ by averaging over fdc in the range
−4 mΦ0 < fdc < 0 mΦ0. Since the parameter fdc con-
trols the timing of the scattering events, this averaging
effectively corresponds to averaging over different scatter-
ing configurations. In mesoscopic systems, the averaging
over different scattering configurations is typically done
by tuning a gate voltage or the in-plane magnetic field.
We choose this particular drive protocol and implemen-
tation of scattering configurations because the transition
rate averaged over detuning is expected to satisfy a sum
rule [17, 18], and we can therefore directly attribute any
deviations to the breaking of the time-reversal symmetry
[21].

Figures 3(b) and 3(c) show the average transition rate
〈Γ〉 and the standard deviation of Γ, respectively, as a
function of drive waveform asymmetry. We note that
〈Γ〉 is independent of α. This is in contrast to mesoscopic
systems, which typically show a dip in the conductance
due to weak localization in the presence of time-reversal
symmetry. Weak localization is thus not present in our
experiments. On the other hand, the sharp peak in the
standard deviation of Γ at α = 0 [Fig. 3(c)] corresponds
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to the UCF-peak of phase-coherent electron transport.
In Fig. 3, the scattering configuration is altered by tun-

ing the static flux detuning fdc. A different way of chang-
ing the configuration is to randomize the drive waveform;
this is closer related to the random, chaotic trajectories
present in mesoscopic systems, but a drawback is that
such randomization will not produce a clean interference
pattern as the one shown in Fig. 3(a). For completeness,
we have performed numerical simulations of the qubit
transition rate with randomized drive waveforms, and we
get a very similar sharp peak in the fluctuations of Γ at
α = 0 (see Supplementary material S1).

The existence of UCF-like features without weak local-
ization is related to the specific scattering configuration
in our system. In mesoscopic electron transport, weak lo-
calization is dominated by the back-scattering from time-
reversed paths originating at the first scattering center
of the incoming electrons. Looking at the sketches in
Fig. 1(a-c), we notice that in our few-scatterer setup, the
first scattering center can scatter in both the forward and
the backward direction. Constructive interference from
time-reversed paths thus leads to enhanced scattering in
both the backward and the forward direction, and the av-
erage transmission probability will not be affected. How-
ever, interference effects are still visible as an increase
of fluctuations in the transmission probability. In meso-
scopic systems, there are many more scatterers, and the
incoming and outgoing leads are far enough separated
that direct scattering from the first incoming scattering
center to the outgoing lead becomes negligible.

So far, we have only discussed variations in Γ due to
the phase pickup between scattering events. Changing
the drive waveform will also affect the transition prob-
abilities of the individual Landau-Zener transitions, but
we expect such variations to average out when measured
over many configurations. This is consistent with the av-
erage transition rate being independent of α, as seen in
Fig. 3(c) and in Fig. S1(c) in the supplementary material.

Measurements of weak localization and universal con-
ductance fluctuations are normally used to determine
coherence lengths in two-dimensional systems. For our
driven qubit, where the interfering trajectories are in
phase space rather than real space, we can employ the
technique to investigate the coherence time T2 (≈ Tφ) of
the device. To this end, we have simulated the qubit’s
transition rate numerically using the same model as in
Ref. [18] for different values of T2 under the drive de-
fined by Eq. (1). Figure 4(a) shows the result of such
a simulation, with qubit parameters ∆/h = 19 MHz (h
is Planck’s constant), T1 = 20µs, and T2 = 10 ns, in
striking agreement with the measured data in Fig. 3(a).

In Fig. 4(b), we plot the standard deviation of the
transition rate, calculated by repeating the simulation
for different values of T2. The peak around zero asym-
metry is very broad for small values of T2, but becomes
sharper and stronger as T2 is increased. This is very sim-
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FIG. 4: Simulation results. (a) Simulated transition rate Γ
for qubit parameters T2 = 10 ns and ∆/h = 19 MHz. (b)
Standard deviation of the simulated transition rates for dif-
ferent values of T2, extracted from simulation results similar
to those shown in Fig. 4(a). Note that the curves are not
offset from each other.

ilar to how features due to weak localization and UCF in
mesoscopic systems depend on the coherence lengths. For
long T2, there are extra structures appearing in Fig. 4(b),
away from the main peak at α = 0, which are an effect of
the small number of possible trajectories in our setup. In
mesoscopic systems, the large number of scattering possi-
bilities average out such configuration-specific structures,
and leaves only broad features related to the breaking of
time-reversal symmetry. We note that the simulations
give good agreement with the data for T2 = 10 − 20 ns,
consistent with previous results [18].

To conclude, we have investigated effects due to time-
reversal symmetry in a driven two-level system where
both the scattering events and the time-reversal sym-
metry are imposed by the driving protocol. This setup
allows us to perform experiments in the regime of few
scatterers, with a finite and controllable number of pos-
sible trajectories. We find that effects similar to univer-
sal conductance fluctuations, normally associated with
chaotic systems with a large number of scattering events,
persist even in the few-scatterer limit. In addition, our
work shows an example of how a well-controlled, well-
understood device like a qubit can be used to simulate
more complex quantum systems.

We thank T. Orlando, M. Rudner and L. Levitov for
helpful discussions.
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