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Abstract

Excitonic effects are crucial to optical properties, and the exciton binding energy, Eb, in tech-

nologically important semiconductors varies from merely a few meV to about 100 meV. This large

variation, however, is not well understood. We investigate the relationship between the electronic

band structures and exciton binding energies in semiconductors, employing first-principles calcula-

tions based on the density functional theory (DFT) and the many-body perturbation theory using

Green’s functions (GW/BSE). Our results clearly show that Eb increases as the localization of

valence electrons increases due to the reduced electronic screening. Furthermore, Eb increases in

ionic semiconductors such as ZnO because, contrary to the simple two-level coupling model, it

has both conduction and valence band edge states strongly localized on anion sites, leading to an

enhanced electron-hole interaction. These trends are quantized by electronic structures obtained

from the DFT; thus, our approach can be applied to understand the excitonic effects in complex

semiconducting materials.
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Excitonic effects in semiconductors, which are determined by not only the quasiparticle

(QP) energies but also the electron-hole interaction, play a critical role in optoelectronic de-

vices, such as photovoltaic cells and light emitting diodes (LEDs) [1, 2]. Without considering

the electron-hole interaction, the independent-QP description of optical spectra is often sig-

nificantly deviated from experimental data [3–10]. The strength of electron-hole interaction

is characterized by the exciton binding energy, Eb, which varies from a few meV to about

100 meV in technologically important inorganic semiconductors. This rather large variation

in exciton binding energy in bulk semiconductors is not well understood from fundamental

principles. Even structurally and/or electronically similar materials can have surprisingly

different Eb. For example, both GaN and ZnO have the Wurtzite structure with similar

lattice constants, band gaps (Eg = 3.44 eV), and effective masses [11, 12], yet the Eb for

GaN of 28 meV [13] is much smaller than that for ZnO of 59 meV [14], despite the fact

that ZnO is more ionic. Based on the simple tight-bonding model [15], the overlap between

electron and hole in the more ionic ZnO is expected to be less and thus ZnO should have

smaller Eb than GaN.

Understanding the variation in Eb among common semiconductors is, therefore, not only

practically important, but also of fundamental interest. The state-of-the-art first-principles

method for electronic excitations is the many-body perturbation theory using Green func-

tions, and accurate Eb can be obtained by solving the Bethe-Salpeter equation (BSE) [4, 16].

However, this approach is computationally extremely demanding; furthermore, the calcu-

lated results do not provide a simple and clear explanation to the large variation in exciton

binding energy. Instead, electronic structures obtained from the Kohn-Sham (KS) density

functional theory (DFT) [17, 18] often give good insights to many electronic and optical

properties. Prediction of the trend in excitonic properties using DFT is thus particularly

advantageous and convenient due to its simplicity and the tremendously reduced computa-

tional efforts compared to the many-body techniques.

In this Letter, we explore the relationship between exciton binding energies and the local-

ization of the KS eigenstates. In the Tamm-Dancoff approximation to the BSE, the exciton is

a superposition of quasi-electron/quasi-hole pairs, with each pair interacting by the screened

direct Coulomb and bare exchange interactions. Thus, the localization and overlap of elec-

tron and hole states is critical because of the 1/r nature of the interaction. Additionally,

valence states not explicitly participating in the exciton formation can contribute to the
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screening of the interaction, and it is a commonly held tenet that localized charge is poorer

at screening than delocalized charge. Thus, we investigate separately the localization of

the band edge states and valence charge density, using the fact that in bulk semiconductors

DFT valence and conduction states are good approximation to quasi-hole and quasi-electron

states, respectively [19, 20], with QP energy corrections applied. By solving the BSE, we

rigorously study the effect of wave function localization on exciton binding energies from a

purely ab-initio framework.

Our analysis has three parts, studying separately the localization of excitons, valence

electrons, and band edge electron and hole states. Comparison of the relative exciton distri-

bution, fixing hole or electron, to the binding energy indicates that compact excitons have

higher binding energies than delocalized excitons. Next, we compare localization of excitons

to localization of the valence electrons. We expect that a localized charge density is rela-

tively poor at screening, thus charge localization should correspond to high Eb. Determining

localization of electrons in the Bloch wave picture is tricky since the electrons are distributed

periodically over all unit cells; instead, we construct maximally localized Wannier functions

(MLWFs [21]) for each valence band. The total variance of these localized orbitals is a quan-

tifiable measure of valence electron localization. We find that localized electrons do, in fact,

correlate with high Eb because of their reduced screening to the electron-hole interaction.

Finally, we examine the localization of the band-edge states near ions. In contrast to the

simple two-level tight-binding picture of ionic bonding, our DFT results indicate that ionic

materials have a significant anion contribution to the conduction band minimum (CBM)

electron state, resulting in significant overlap between the CBM electron state and the va-

lence band maximum (VBM) hole state on the anion sites. The strong Coulomb interaction

between these states near the anion sites is responsible for the tightly bound excitons for

systems such as ZnO.

Because excitons are intrinsically two-particle objects, common independent electron

methods in electronic structure calculations are not adequate to describe their behavior,

hence a more rigorous level of theory must be employed. We perform electronic ground-

state calculations with DFT, and then use the many-body perturbation theory with Green’s

functions (GW/BSE) on top of the KS eigenstates. The conceptual advantage of the BSE

is that of a two-particle equation, which is necessary for describing the excitonic effects. We

diagonalize the two-particle Hamiltonian to explicitly obtain the exciton eigenfunctions and

3



eigenvalues, and then the exciton binding energy - the difference between the QP gap and

the optical gap. The intermediate GW step essentially results in an adjustment of the KS

eigenvalues towards QP energy levels, which can be matched to experiment. It has been

shown that the combined GW/BSE method provides significantly better agreement with

experimental optical properties than single-particle calculations alone [3–10].

Density functional calculations are performed with the open-source code Quantum

ESPRESSO [22]. We use a planewave basis expanded to 45 Ha and norm-conserving

pseudopotentials to perform non-spin polarized valence electron calculations. The Perdew-

Burke-Ernzerhof (PBE) parametrization of the generalized gradient approximation (GGA)

[23] is adopted for the exchange-correlation functional, with the Brillioun zone sampling on a

12×12×12 Monkhorst-Pack grid. Wannier functions are constructed using the wannier90

code [24, 25]. To better describe the strong Coulomb and exchange interactions of the local-

ized Zn d states, the GGA+U method [26, 27] is used for ZnO, with the screened Coulomb

and exchange parameters U = 8.0 eV and J = 0.9 eV, respectively, which were calculated

from first-principles [28]. GW and BSE calculations employ the BerkeleyGW package [29],

and we perform the single shot G0W0 calculations using the plasmon-pole approximation [20]

to the dynamical screening. The BSE kernel is constructed using the four highest valence

bands and four lowest conduction bands of the system on the same 12 × 12 × 12 k-point

grid; however, accurate representations of the band edge excitons require an enormously

dense grid of k-points. Fortunately, BerkeleyGW can interpolate the interaction kernel onto

a much finer grid of k-points, eliminating the formidable need to compute a huge number

of matrix elements. To keep the matrix diagonalization tractable, we interpolate the kernel

onto a very dense grid in roughly 2% of the full Brillouin zone, centered at the direct gap of

the material.

For completeness in our analysis, we first confirm the intuitive picture of more localized

excitons having higher Eb. Before comparing the localization of the exciton to the bind-

ing energy, we first define our measure of localization in three dimensions. To obtain a

three-dimensional distribution from the six-dimensional exciton wave function Ψ(r1, r2) for

electron and hole coordinates r1 and r2, respectively, we examine the relative distribution

φ(r) of the electron around the hole:

φ(r) =

∫

Ψ(r′, r′ + r)dr′. (1)
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FIG. 1: (color online) Calculated exciton binding energy (Eb) vs exciton Bohr radius (a∗0). These

theoretical values obtained from solving the BSE agree very well with experimental data. The

curve represents Eb fitted to C/(a∗0)
2, with C a constant. We also computed a very strongly bound

and localized exciton in NaCl, which is off the scale of the plot but in agreement with the overall

trend.

Then one can compute the spread of φ(r), defined as

Ω = 〈r2〉 − 〈r〉2, (2)

and the localization length as
√
Ω.

Assuming φ(r) of the (lowest-energy) exciton has the 1s hydrogen-like wave function, then

its Bohr radius a∗0 ≈
√
Ω/

√
3, and we can simply compute a∗0 to compare the localization

levels of excitons. Fig. 1 summarizes the computed exciton binding energies in Si, GaAs,

AlN, GaN, InN, and ZnO, as a function of exciton Bohr radius. As expected, Eb increases
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monotonically as a∗0 decreases. Using the hydrogenic model,

a∗0 =
m

m∗
ǫa0, (3)

Eb =
e2

ǫa∗0
=

e2a0
(m∗/m)(a∗0)

2
, (4)

where m (m∗) is electron (effective reduced) mass, a0 is the Bohr radius for hydrogen atom,

e is the electron charge, and ǫ is the dielectric constant. Because the variation of m∗/m

is relatively small in the considered semiconductors except for GaAs, Eb ∝ 1/(a∗0)
2, as

demonstrated in Fig. 1.

In both the simple hydrogenic model of excitons and the BSE description, screening,

predominantly by the valence electrons, leads to a weaker Coulomb interaction between

electron and hole, and hence a reduced exciton binding energy. Although the actual behavior

of electronic screening in real materials is rather complicated, qualitatively, a more extended

(delocalized) valence electron distribution tends to screen more strongly than less extended

(localized) distribution. Stronger screening leads to higher Eb and more localized excitons

as is evident in Fig. 2, in which both valence electrons and exciton distributions are plotted

for Si and ZnO. The more localized valence electrons in ZnO lead to smaller a∗0 and more

compact exciton than those in Si.

To quantitatively demonstrate the relationship between the localization of valence elec-

trons and exciton binding energy, however, we need to use Wannier functions for extended

systems whose localization is otherwise not obvious in the Bloch-wave picture. Wannier

functions are expected to display localization characteristic of the total charge density. An

ionic crystal, for instance, would likely have Wannier functions localized to the anions of the

system; while in GaAs Wannier functions are expanded to most space.

As introduced by Marzari and Vanderbilt [25], the spread functional Ω of an N -band

crystal in real space is

Ω =

N
∑

n=1

[

〈r2〉n − 〈r〉2
n

]

, (5)

which is minimized with respect to unitary transformations, and the localization length of

the valence electrons σel =
√
Ω/N . Ω can be decomposed into one gauge invariant term

ΩI and a variant term Ω̃. The wannier90 code [24, 25] is employed, which searches over

a range of unitary transformations to the wave functions to identify the Wannier orbitals

(MLWFs) that minimize Ω̃.
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FIG. 2: (color online) Isosurfaces of valence charge density (upper panels) and exciton distribution

(lower panels), |φ(r)|2, in Si (left panels) and in ZnO (right panels). Here four valence bands for

Si and six for ZnO are included, and the corresponding isosurface values are set to be identical in

panels (a) and (b), with high to low values ranging from red (dark) to yellow (light) colors. Charge

density is periodic, plotted in a single unit cell, while exciton is non-periodic, extended to many

unit cells. Atoms in a unit cell of Si and ZnO are illustrated in panel (c) and (d), respectively.

Since the induced change in macroscopic polarization ∆Pmac depends linearly on the

localization length σel [30], dielectric constant is also expected to depend on σel linearly,

ε = C1 + C2σel, (6)

as clearly demonstrated in Fig. 3(a), with C1 and C2 as two fitting parameters. Combining

Eqs. (3) and (6), we find that

a∗0 =
m

m∗
a0(C1 + C2σel), (7)

i.e., the exciton Bohr radius depends linearly on valence electron localization length as well,

if the variation of m/m∗ in semiconductors is omitted. Fig. 3(b) compares a∗0 with σel;

although the linear dependence is not quantitatively accurate, qualitatively, a low level of

valence electron localization leads to strong screening and large value of ε, which cause

the exciton to be loosely bound with low Eb and large a∗0. While these evident trends

are not particularly surprising, our ab initio calculations carried out to the Bethe-Salpeter
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FIG. 3: (color online) Calculated dielectric constant (ε) in panel (a) and exciton Bohr radius (a∗0) in

panel (b) as functions of valence electron localization length (σel). Here the dashed lines are linear

fittings, and the black and green (grey) symbols correspond to σel computed from the invariant

(ΩI) and total (Ω) spread, respectively.

level provide rigorous confirmation of the relationship between localized charge, electron

screening, and exciton binding energies.

Finally, in the simplest and widely accepted picture of atomic bonding in solids [15], the

anion states and cation states form bonding and anti-bonding bands. The bonding VBM

state is mainly composed of anion atomic orbitals while the anti-bonding CBM state mainly

consists of cation atomic orbitals. Our DFT results indicate that this description is not
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completely correct, especially for ionic materials; instead, a significant anion contribution

to the CBM for AlN and ZnO is found. The deviation is because these ionic compounds

have some high-lying unoccupied anion s-orbitals that can hybridize strongly with the cation

s-orbitals, making the CBM contain an appreciable amount of anion orbitals. Furthermore,

we find that, for all materials in our study, deviations from this model are critical to explain

trends in Eb. In an exciton, the hole is derived mostly from the states close to VBM, while

the electron is mostly derived from the states close to CBM; therefore, the contribution of

anion orbitals near the CBMwould strongly enhance the Coulomb and exchange interactions,

which are important matrix elements in the electron-hole interaction kernel K for BSE. As

a result, materials with a significant amount of CBM and VBM states both localized at the

same atomic site are expected to have a high exciton binding energy, instead of CBM and

VBM states being on the anions and cations, separately.

The BSE kernel K has screened direct and exchange interactions, as constructed by terms

such as ψc(r1)ψ
∗

v
(r2). This suggests that NcNv, the product of the numbers of localized

valence and conduction states near band edges, could be used to indicate the strength of K

and therefore the strength of the electron-hole interaction. We compute the product NcNv

at each atomic site to show that this onsite localization at anions in ionic semiconductors

is a good indicator of the strength of the exciton binding. Here Nc and Nv are the numbers

of near gap states within a cutoff energy, which in real space are near ions within a cutoff

radius. In reasonable ranges, the trend of Eb as a function of NcNv is not sensitive to the

choices of both cutoffs, and NcNv is a practical way to account for CBM and VBM states

localized on the same atomic sites. Fig. 4 shows that NcNv for cations is negligible compared

to that for anions. Most importantly, Eb increases as NcNv (at the onion sites) increases,

and a good numerical fitting is Eb ∝
√
NcNv, as plotted in Fig. 4. This cannot be derived

from the simple effective mass model, and a high value of total density of states at the band

edges, by itself, is not a strict enough criterion to indicate the strength of excitonic binding.

In particular, returning to the comparison of GaN and ZnO, their difference in Eb can be

explained by their different numbers of near-gap states at the anion site. ZnO has a large

CBM component on oxygen sites because of strong hybridization of the 4s states of Zn with

the high lying 3s states of oxygen. GaN does not have as much hybridization for the CBM

state because the N 3s level has a higher energy than the Ga 4s level, and, as a result, has

a reduced value of Nc at the N site.
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FIG. 4: (color online) Exciton binding energy (Eb) as a function of NcNv. See the text for the

definition of Nv and Nc. The solid (open) symbols are NcNv for the anion (cation) sites, and the

curve is a guide to the eye. The data point for NaCl is off the scale off the plot to the top-right,

but agrees with the overall trend.

In conclusion, the variation in exciton binding energy of semiconductors manifests itself

in the real space localization of the exciton, which in turn is determined by the strength of

electron screening in semiconductors. The more localized valence electrons, which we quan-

tify by the spread of the Wannier functions, are found to be poorer at screening, leading

to a smaller dielectric constant. Furthermore, Eb is large for ionic semiconductors because,

in contrast to the simple two-level coupling model, the conduction band edge states have

significant overlap with valence band edge states localized to anion sites, increasing the

electron-hole interaction. All these trends can be qualitatively fitted to simple scaling rules

based on essential physical pictures of exciton, valence electrons and near gap states, and

they pave the way for understanding and predicting the exitonic effects in more compli-

cated semiconductors without resorting to computationally very demanding many-particle

perturbation theory.
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