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We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear
excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the inter-
action between constituent particles is strong, and the excitation spectrum is nonlinear. Although
at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a
theoretical description of the approach of the system to thermal equilibrium. The typical relaxation
rate scales as the fifth power of temperature.
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One-dimensional interacting systems [1] are funda-
mentally different from their higher-dimensional counter-
parts [2]. Regardless of the statistics of the constituent
particles, elementary excitations in one dimension are be-
lieved to be bosons [1, 3, 4], the waves of density. The
low-energy properties of the system are commonly de-
scribed in terms of the Luttinger liquid [3, 4] theory of
free bosons with linear spectrum ωq = s|q| up to a certain
cutoff. Here q is the wave number and s is the velocity.

Just as quasiparticles in the Fermi liquid [2], bosons in
the Luttinger liquid do not represent exact eigenstates of
a generic one-dimensional system. At finite energies, the
corresponding effective Hamiltonian should be amended
by irrelevant in the renormalization group sense pertur-
bations [3], such as interaction between the bosons. How-
ever, a naive attempt to account for this interaction per-
turbatively immediately leads to difficulties.

Consider, for example, the interaction-induced decay
of a boson with wave number q into two bosons with
wave numbers q′1 and q′2, see Fig. 1(a). The corresponding
inelastic scattering rate is given by the Fermi golden rule,

τ−1q ∝
∫
dq′1dq

′
2 [. . .] δ(q− q′1− q′2) δ

(
ωq −ωq′1 −ωq′2

)
, (1)

where the two δ-functions express the momentum and
energy conservation. When all three wave numbers have
the same sign, the second δ-function reduces to s−1δ(q−
q′1 − q′2), and the rate (1) diverges.

One way around the failure of the perturbation theory
is to abandon the effective Luttinger liquid description
altogether and approach the problem from the original
fermionic perspective [5, 6]. Indeed, for noninteracting
fermions the spectral weight of the dynamic structure
factor (Fourier transform of the density-density correla-
tion function) at a fixed q is spread uniformly over a
narrow interval of the width

δωq = ~ρ2q2/m∗ (2)

about ω = ωq. Here m∗ is the effective mass, which for
free fermions coincides with the bare mass m, and q is the

dimensionless (measured in units of the particle density
ρ) wave number. At sufficiently small q, Eq. (2) is appli-
cable to interacting fermions as well [5–7]. The inverse of
the width, 1/δωq, provides a natural estimate of the life-
time of bosons in the Luttinger liquid. Since δωq ∝ ω2

q ,
the bosons indeed represent well-defined quasiparticles.

In this Letter we develop an alternative approach,
based on the observation that divergences that plague the
evaluation of the quasiparticle decay rate in the conven-
tional Luttinger liquid theory can be cured if the boson
spectrum is nonlinear, such as

ωq = s|q|
(
1− ξq2

)
. (3)

Even for a weak nonlinearity ξq2 � 1, decay of a single
boson into two is forbidden by the momentum and en-
ergy conservation laws and can only occur virtually. The
simplest real scattering process involves two bosons both
in the initial and in the final states, see Fig. 1(b), and
has a finite rate.

Keeping the nonlinear correction in Eq. (3) is justi-
fied only in the limit of strong repulsion, i.e., when the
Luttinger liquid parameter [1] K = π~ρ2/ms is small.
Indeed, the correction must exceed the width δωq [see
Eq. (2)], which can be viewed as an uncertainty in the
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FIG. 1: (a) For bosons with a linear spectrum scattering of
a single boson (filled circle) into two (open circles) has a di-
vergent rate. (b) For bosons with a nonlinear spectrum the
simplest scattering event satisfying the momentum and en-
ergy conservation laws involves two bosons both in the initial
state (filled circles) and in the final state (open circles). For
given q1 and q2, the conservation laws yield a unique set q′1, q

′
2,

thus leading to a finite transition rate.
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energy of the Luttinger liquid’s boson. Using the esti-
mate [8] m∗/m ∼

√
K, valid for K � 1, we arrive at the

condition ξq �
√
K.

For K � 1, Eq. (3) is applicable in a broad range of
wave numbers

√
K � ξq �

√
ξ, and spectrum nonlin-

earity has a dramatic effect on inelastic scattering. For
the scattering process with two bosons (q1 and q2) in the
initial state and two bosons (q′1 and q′2) in the final state
[see Fig. 1(b)], the conservation laws q1+q2 = q′1+q′2 and
ωq1 + ωq2 = ωq′1 + ωq′2 yield a unique set q′1, q

′
2 for given

q1, q2. Moreover, if q1, q
′
1, and q′2 belong to the same (say,

right-moving) branch of the spectrum [see Fig. 1(b)], the
remaining wave number is given by q2 ≈ − (3ξ/2)q1q

′
1q
′
2,

i.e., the sign of q2 is opposite to that of q1, q
′
1, q
′
2 and

the momentum transferred from the left-moving branch
of the spectrum in each act of scattering is parametri-
cally small compared with that redistributed among the
three right-moving bosons. Accordingly, the process re-
sembles decay of a single right-moving boson into two.
However, unlike for bosons with strictly linear spectrum,
the mere presence of the left-moving boson with a very
small momentum, as required by the conservation laws,
is sufficient to regularize the divergences.

We describe our strongly interacting system by the
Hamiltonian

H =
∑
l

p2l
2m

+
1

2

∑
l 6=l′

V (xl − xl′), (4)

where pl and xl are, respectively, the momentum and
position of the lth particle (l = 1, . . . , N), and V (x) is
the interaction potential. In the strong repulsion limit
(i.e., for d2V/dx2

∣∣
x=1/ρ

� ~2ρ4/m, which is equivalent to

K � 1) the particles, regardless of their statistics, form
at low energies a periodic chain, the so-called Wigner
crystal (see [9] for a review). Although in one dimen-
sion quantum fluctuations destroy the true long-range
order [10], the interparticle distance remains close to 1/ρ.

Similar to ordinary crystals, the elementary excita-
tions of the Wigner crystal are phonons. These phonons
are nothing but the waves of density, with a typical for
phonons linear dispersion at small momenta, i.e., the
phonons coincide with the bosons of the effective Lut-
tinger liquid theory. The boson spectrum ωq in the lead-
ing (zero) order in ~ can be found by expanding the
potential energy in Eq. (4) to second order in the dis-
placements of the particles from the corresponding lat-
tice sites ul = xl − l/ρ, and solving classical equations of
motion [11]. For small q, this yields Eq. (3) with model-
dependent s and ξ [12].

Interaction between the bosons arises from the higher-
order (anharmonic) terms in the expansion of the poten-
tial energy in Eq. (3) in the displacements ul. A scatter-
ing process with two bosons both in the initial and in the
final states, see Fig. 1(b), can occur either in the first or-
der in the quartic anharmonicity, or in the second order in

the cubic anharmonicity [11], and the corresponding con-
tributions to the on-shell scattering amplitude tq1q2;q′1q′2
are of the same order of magnitude. If all four wave num-
bers are small, the amplitude simplifies [12] to

tq1q2;q′1q′2 =
λ

N

~2ρ2

m

∣∣q1q2q′1q′2∣∣1/2 . (5)

This expression is easy to understand if one notices that
each boson with wave number q participating in scatter-
ing contributes a factor of (~/ωq)1/2|q| ∝ (~|q|)1/2 to the
amplitude. The dimensionless parameter λ in Eq. (5) de-
pends on the functional form of V (x) [12]. In particular,
λ = 0 for V (x) ∝ 1/ sinh2(cρx) and V (x) ∝ 1/x2 [12], as
expected for integrable models [13] exhibiting no relax-
ation. For a generic interaction potential, however, |λ|
is of order unity. For the screened Coulomb interaction
λ = −3/4, see [12].

In the absence of integrability, inelastic scattering leads
to relaxation of the non-equilibrium boson distribution
function Nq towards thermal equilibrium. Such thermal-
ization of Nq is described by the Boltzmann equation,
which for a homogeneous system in the absence of exter-
nal fields has the form [14]

∂Nq
∂t

= Iout
[
Nq
]

+ Iin
[
Nq
]
, (6)

where the two terms in the right-hand side describe, re-
spectively, the scattering out of single-boson state q, and
the scattering into this state. In the leading order in ~,
these terms are given by

Iout
[
Nq
]

= −
∑
p

∑
q1>q2

Wq,p;q1,q2NqNp(1 +Nq1)(1 +Nq2),

Iin
[
Nq
]

=
∑
p

∑
q1>q2

Wq,p;q1,q2(1 +Nq)(1 +Np)Nq1Nq2

with

Wq1,q2;q
′
1,q

′
2

=
2π

~2
∣∣tq1q2;q′1q′2∣∣2δq1+q2,q′1+q′2

× δ(ωq1 + ωq2 − ωq′1 − ωq′2). (7)

We begin the analysis of Eqs. (6)-(7) by consider-
ing the relaxation rate of a single high-energy boson.
Specifically, we assume that the distribution function Nq
differs from its equilibrium form, the Bose distribution

nq =
(
e~ωq/T − 1

)−1
, in the population of a single state

with q in the range T/~s � q � 1/
√
ξ. In this limit

Iin
[
Nq
]

is exponentially suppressed, and Eq. (6) reduces
to ∂Nq/∂t = −Nq/τq with the relaxation rate

τ−1q =
λ2K2s

48π3
×


(T/~s)q4, q � (T/~sξ)1/3

a(T/~s)3

(ξq)2
, q � (T/~sξ)1/3

, (8)

where a = 32ζ(3)/3. Here ζ(x) is the Riemann’s zeta-
function, ζ(3) ≈ 1.2. Although Eq. (8) is not directly
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applicable to thermal bosons with energy of the order of
T , setting q ∼ T/~s in Eq. (8) results in a correct order-
of-magnitude estimate of the typical scattering rate, see
Eq. (16) below.

Independently of the initial state, at t→∞ the distri-
bution function Nq relaxes to nq. In order to study the
approach to equilibrium, we substitute

Nq = nq + gqfq, gq =
√
nq(1 + nq) (9)

into Eqs. (6)–(7), neglect all but linear in fq contribu-
tions, and obtain

∂fq
∂t

= − 2π

~2
∑
p

∑
q1>q2

∣∣tqp;q1q2∣∣2(fqgq +
fp
gp
− fq1
gq1
− fq2
gq2

)
× gpgq1gq2δ(ωq + ωp − ωq1 − ωq2) δq+p,q1+q2 . (10)

The linearized Boltzmann equation (10) is applicable
for both positive and negative q. Focusing from now on
on q > 0, we note that Eq. (10) simplifies considerably if

ξ(T/~s)3 � q � (T/~sξ)1/3. (11)

The first inequality in Eq. (11) ensures that contributions
from the processes with all bosons but q on the left-
moving branch of the spectrum are exponentially sup-
pressed. The second inequality in Eq. (11) guarantees
that the wave number of the only left-moving boson par-
ticipating in the remaining scattering processes is much
smaller than T/~s. Under these conditions, the spectrum
in the right-hand side of Eq. (10) can be linearized, which
amounts to neglecting corrections of order ξ(T/~s)2 � 1
[this inequality is implicit in Eq. (11)]. This approxima-
tion corresponds to the substitution into Eq. (10)

δ
(
ωq + ωp − ωq1 − ωq2

)
δq+p,q1+q2 ≈

1

2s

[
δ(p+ 0) δq,q1+q2 + δ(q2 + 0) δq+p,q1

]
, (12)

where δ(k + 0) indicates that k is an infinitesimal wave number on the left-moving branch. This yields

∂fq
∂t

= − 1

4π3
λ2K2s (T/~s) q

∫ ∞
0

dq1

{
1

2

∫ ∞
0

dq2 δ(q − q1 − q2) q1gq1q2gq2

(
fq
gq
− fq1
gq1
− fq2
gq2

)

+

∫ ∞
0

dp δ(q + p− q1) pgpq1gq1

(
fq
gq

+
fp
gp
− fq1
gq1

)}
, (13)

where gq, gp, gq1 , and gq2 are given by Eq. (9) with a

linearized spectrum, e.g., gq =
[
2 sinh(~sq/2T )

]−1
. The

factor T/~s in the right-hand side of Eq. (13) is a remnant
of the left-moving boson. Indeed, its wave number k [k
is either p or q2, see Eq. (12)] appears in Eq. (10) in
combination |k|gk, where the factor |k| comes from the
square of the amplitude (5). For |k| � T/~s, we have
gk = (T/~s)|k|−1, which gives |k|gk = T/~s.

Note that the parameter ξ [see Eq. (3)] does not appear
explicitly in Eq. (13). This is consistent with the above
result for the relaxation rate of high-energy bosons: τ−1q
is independent of ξ at q � (T/~sξ)3, see Eq. (8). Note
also that all wave numbers in Eq. (13) are strictly posi-
tive: coupling between bosons moving in opposite direc-
tions appears only in higher orders in ξ(T/~s)2. Accord-
ingly, the right-hand side of Eq. (13) involves only three
bosons moving in the same direction. This kind of scat-
tering processes has a divergent rate when the spectrum
is taken to be strictly linear from the outset, see Eq. (1)
and Fig. 1(a). While Eq. (13) also corresponds to the
limit of vanishing spectrum nonlinearity, it is crucial that
the spectrum is linearized after the scattering amplitudes

are evaluated and the divergences are regularized.
After integration over q2 and p, Eq. (13) assumes the

form

∂

∂t
f(x, t) = − τ−10

∫ ∞
0

dy G(x, y)f(y, t), (14)

where f(x, t) = fq(t)
∣∣
q=2π(T/~s)x. The kernel G(x, y) is

given by

G(x, y) =
xy(x+ y)

sinh
[
π(x+ y)

] − xy(x− y)

sinh
[
π(x− y)

]
+

1

6
x2(x2 + 1)δ(x− y) , (15)

and the typical scattering rate is

τ−10 = 2πλ2K2s (T/~s)5. (16)

The integro-differential equation (14)-(15) can be solved
exactly. The solution reads [12]

f(x, t) = α0ϕ0(x) +

∫ ∞
0

dν ανϕν(x) e−ηνt/τ0 , (17)
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where ην = ν2(ν2 + 1)/6 and

ϕ0(x) =
√

6π
x

sinh(πx)
, (18)

ϕν(x) =
1√

(ν2 + 1)(4ν2 + 1)

{
(2ν2 − 1)δ(x− ν)

+
3x

sinh[π(x+ ν)]
+

3x

sinh[π(x− ν)]

}
. (19)

(The singularity in the right-hand side of Eq. (19) is to
be understood as the principal value.) The coefficients
α0 and αν in Eq. (17) are determined by the initial con-
ditions, αµ =

∫∞
0
dxϕµ(x)f(x, 0) for µ = 0, ν.

The first term in the right-hand side of Eq. (17) rep-
resents a stationary (independent of t) contribution to
f(x, t). At t→∞ Eqs. (9) and (17) yield

δNq = Nq
∣∣
t→∞ − nq = α0gqϕ0(x)

∣∣
x=~sq/2πT . (20)

This result has a clear physical meaning. In general, a
stationary (equilibrium) solution of the Boltzmann equa-
tion Nq

∣∣
t→∞ is not unique. All such solutions, however,

have the form of the Bose function nq, parametrized by
temperature T . A change of T by δT generates a cor-
rection to Nq

∣∣
t→∞, which, to linear order in δT , indeed

has the form (20) with α0 =
√
π/6 (δT/T ). On the other

hand, the energy of the system at t→∞ coincides with
that in the initial non-equilibrium state. Thus, the tem-
perature T characterizing the equilibrium distribution at
t → ∞ is uniquely determined by the initial conditions.
Choosing nq as the Bose distribution with this tempera-
ture, one ensures that α0 = 0 in Eq. (17).

The remaining (time-dependent) term in the right-
hand side of Eq. (17) describes approach to equilibrium.
At short times, t � τ0, only the relaxation modes with
ν & (τ0/t)

1/4 � 1 are affected. Since ϕν(x) ≈ δ(x−ν) at
ν � 1, Eq. (17) gives f(x, t) ∝ e−ηxt/τ0 , which describes
exponential relaxation with the rate given by the appro-
priate limit of Eq. (8) [q � (T/~sξ)1/3, see Eq. (11)].

At t � τ0 the high-energy bosons have already re-
laxed, and thermal bosons (with x ∼ 1 or q ∼ T/~s)
have equilibrated among themselves, although at tem-
perature that has not yet reached its equilibrium value.
Indeed, at large t the main contribution to the inte-
gral in Eq. (17) comes from small ν. Approximating
ϕν(x) ≈ − δ(x − ν) +

√
6/π ϕ0(x) and ην ≈ ν2/6, we

find αν = −f(ν, 0), and Eq. (17) yields

f(x, t) = F (x, t)−
√

6/π ϕ0(x)

∫ ∞
0

dν F (ν, t). (21)

Here F (x, t) = f(x, 0) e−x
2t/6τ0 corresponds to exponen-

tial relaxation of the boson distribution at q � T/~s
with the rate

τ−1q =
1

12π
λ2K2s (T/~s)3q2. (22)

The role of the second term in Eq. (21) is to ensure the
energy conservation. The corresponding correction to the
distribution function [see Eq. (9)] can be cast in the form

δNq =
∂nq
∂T

δT (t), δT (t) = − 3~s
π2

∫ ∞
0

dq fq(0) e−t/τq

with 1/τq given by Eq. (22). For generic fq(0), the correc-
tion to temperature δT (t) exhibits non-exponential de-
pendence on time.

To summarize, elementary excitations of one-
dimensional interacting systems are often described in
the framework of the effective Luttinger liquid theory.
Both the conventional Luttinger liquid theory [1, 3, 4]
and its recent extensions [6, 7, 15] provide a set of effi-
cient tools for evaluation of various correlation functions.
However, none of these approaches is capable of describ-
ing the thermalization of bosonic quasiparticles in non-
integrable systems because interaction between bosons
with linear spectrum results in a divergent inelastic scat-
tering rate.

In this Letter we demonstrated that the divergences
are regularized when the nonlinearity of boson spectrum
is taken into account. We derived and solved the Boltz-
mann equation describing the fastest equilibration pro-
cess in the system, namely, thermalization of bosons mov-
ing in the same direction. The equation describes bosons
with a linearized (as opposed to strictly linear) spectrum
and results in a finite relaxation rate, see Eqs. (16) and
(22).

At t � τ0 the relaxation is controlled by the inverse
lifetime of a boson, Eq. (8). Exponential decay of the
distribution function in this regime manifests itself in
Lorentzian broadening of the peak in the dynamic struc-
ture factor at q � max

{
T/~s,

√
K/ξ

}
. In principle,

such broadening can be observed using the two-photon
Bragg spectroscopy technique [16] in fermionic [17] and
bosonic [18] strongly interacting ultracold dipolar quan-
tum gases [19] confined in one-dimensional traps.
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