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Abstract 

When pure water is cooled at ~ 106 K/s, it forms an amorphous solid (glass) instead of the more 

familiar crystalline phase. The presence of solutes can reduce this required (or “critical”) cooling 

rate by orders of magnitude. Here, we present critical cooling rates for a variety of solutes as a 

function of concentration, and a theoretical framework for understanding these rates. For all 

solutes tested, the critical cooling rate is an exponential function of concentration. The 

exponential’s characteristic concentration for each solute correlates with the solute's Stokes 

radius. A modification of critical droplet theory relates the characteristic concentration to the 

solute radius and the critical nucleation radius of ice in pure water. This simple theory of ice 

nucleation and glass formability in aqueous solutions has consequences for general glass-

forming systems, and in cryobiology, cloud physics, and climate modeling. 
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Body  

Ice nucleation and growth are of major interest in fields ranging from cryobiology to atmospheric 

physics. Ice is a key issue in cryopreservation of cells and tissues [1] and in cryocooling of 

samples for macromolecular crystallography [2,3], where solutes like salts, sugars, alcohols and 

polyols can have dramatic effects on ice formation. In atmospheric physics, models of cloud 

formation are sensitive to the nature of the critical nucleus of ice crystals [4] with implications 

for climate models [5]. Supercooled water is an interesting system in its own right [6], and the 

formation of crystalline phases from supercooled solutions is an active area of study [7]. 

Previous experiments have focused on properties such as the melting and glass transition 

temperatures, and models to explain the data have largely been phenomenological. Similar 

models have been applied to explain glass formability in a wide variety of 

non-aqueous systems.  Here, we report measurements of the minimum cooling rates (or “critical 

cooling rates” (CCRs)) required to prevent ice formation in aqueous solutions during cooling to 

~100 K or below. We show that a surprisingly simple statistical modification to classical 

thermodynamic nucleation theory provides an excellent account of these data. 

We studied eight different solutes (see Figure 1) including a salt (sodium chloride), simple 

alcohols (methanol, ethanol), sugars (dextrose, trehalose), polyols (glycerol, ethylene glycol), 

and poly-ethylene glycol 200 (PEG 200). All are compact and highly soluble, and can have large 

effects on critical cooling rates required for vitrification.  

The effects of these solutes on ice nucleation were evaluated by measuring the critical cooling 

rate (CCR), above which no ice was observed. Below the critical rate, a sample turns opaque on 

cooling, indicating the formation of polycrystalline ice. As the rate increases, a transition to 

transparent samples is observed. This optical transition corresponds to a transition in the X-ray 

diffraction patterns obtained from the cooled samples [8]. Clear samples show diffuse rings 

characteristic of a glassy state, whereas opaque samples show a sharp ring characteristic of a 

crystalline powder.  

As described in more detail elsewhere [9], ultra-thin-wall plastic tubing was filled with the 

solution of interest and plunged into liquid nitrogen. Cooling rates were varied by varying the 



tube diameter, and were directly measured for a reference solution using thermocouples threaded 

down the tube center.  For each tubing diameter, solutions with solute concentration increasing in 

2 % increments were sequentially cooled until the crystalline-to-amorphous transition was 

observed; the cooling rate in that tubing diameter was recorded as the CCR for that 

concentration. Cooling rates examined here varied from ~10 to 1000 K/s, much larger than 

achieved in previous calorimetric studies, allowing CCR determination at much lower solute 

concentrations.  

Figure 1 shows the resulting CCR versus concentration data for eight cryoprotectants, with the 

data for glycerol taken from [9]. Two features are noteworthy. First, for all solutes, the CCR 

varies exponentially with concentration over the two orders of magnitude in cooling rate studied. 

Second, each exponential extrapolates to a value between 105 and 106 K/s at zero concentration, 

in agreement with the estimated value for the CCR of pure water  [10,11]. It is thus likely that 

the CCR remains exponential in concentration to zero concentration. This suggests that a simple 

theory, encompassing all solutes at all concentrations, can be used to explain the data.  

We begin by assuming that at cooling rates near the CCR, the limiting step in ice formation is 

cubic ice (Ic) nucleation at a temperature near 200 K. This is justified for several reasons. First, 

unlike at small cooling rates, just below the CCR there is comparatively little time for nuclei to 

grow before the uncrystallized sample fraction vitrifies. Second, the ice nucleation rate peaks 

strongly near 200 K, but the growth rate there is small and decreases rapidly on further cooling 

[12-16]. Third, X-ray diffraction experiments suggest that the transition versus cooling rate or 

concentration between crystalline and amorphous samples is discontinuous [8]; if growth was 

limiting, one would expect a continuous transition as samples were trapped with various 

ensembles of growing ice clusters after cooling at different rates. Finally, it is known that the 

formation of a small (~20 Å) cubic ice cluster precedes conversion to and growth of a larger 

hexagonal ice cluster [4,17].  

We consider cubic ice nucleation in a concentrated solution as being comprised of two steps. 

First, local concentration fluctuations must give rise to a region of pure liquid water large enough 

for cubic ice to nucleate. Then, nucleation proceeds as it would in the pure system. This 

simplified picture allows us to write the nucleation rate for nuclei of size V as 



 0
V

n nJ J P=  (1) 

where  is the nucleation rate in the pure system,  is the nucleation rate in a solution with 

solute number density , and  is the probability of finding a region of volume  empty of 

solutes. If the solutes are ideal (i.e. they behave as an ideal gas), the number m within will be 

given by a Poisson distribution with an average given by the concentration [18]. Evaluating this 

distribution at m=0 gives 

 V nV
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and 
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nV
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The assumption of nucleation-dominated ice formation implies that the critical cooling rate 

should be proportional to the ice nucleation rate. Consequently, it is clear that (3) can be used to 

describe the data in Figure 1 with each solute having an exponential dependence of CCR on 

concentration n and a solute-specific characteristic volume.  

To evaluate and interpret this volume, we incorporate the effect described by (3) into classical 

nucleation theory. For a pure system, the change in free energy on formation of a spherical ice  

cluster of a given radius, 
cIR , is 
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where Δ vg  and  σ are the bulk and surface free energy density changes, respectively, and Ic 

indicates cubic ice.  The maximum of the function *
0GΔ  – the barrier to nucleation – occurs at the 

critical radius given by 
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The nucleation rate can then be written as  
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where A is a prefactor that will not concern us for the remainder of the discussion. The effect of a 

solute can be expressed by combining (3) and (6), which gives 
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This suggests a modification to the classical free energy of a cluster,  
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where we assume that Δ vg  and are the values for the pure system. The first two terms are 

common to (4) while the third term represents the free energy of excluding the solute from the 

spherical region of radius 
cIR . As shown in Fig. 2, for a solute of size sR , this requires that the 

solute’s center of mass be excluded from a volume of radius 
cIR + sR . The factor nkBT in the 

third term of the free energy can be recognized as a microscopic osmotic pressure [19]. 

From (7), the energy barrier to nucleation in the presence of solutes is then 
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where *
cIR is the critical nucleation radius for cubic ice in pure water.  The size of the expansion 

parameter ΔB vnk T g  can be estimated from ( )/Δ = Δ − Δ ≈ Δv v v mg h T s L T T  where L is the latent 

heat of fusion, Tm is the melting temperature and ΔT  is the undercooling at which nucleation 

occurs.  Using L = 334 J/kg and 273=mT  K for hexagonal ice and 73Δ =T K gives 

0.18Δ =B vnk T g  for n corresponding to a 10 M solution. As shown in Table I, the maximum 

concentrations in Fig. 1 of all solutes except methanol are smaller than this value.   

Assuming that the CCR is proportional to nucleation rate, (8) yields 
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This implies that the slope of the data for each solute in Fig. 1 is set by the volume Ve of the 

sphere from which its center of mass must be excluded; the radius of this sphere is the sum of the 

radius of a critical nucleus in the pure system and the solute’s radius.  

Figure 3 shows the “exclusion radius” *
ce I sR R R= +  obtained from the fits in Fig. 1 for each 

solute, versus its Stokes radius (calculated from measured self-diffusion constants at T=298 K 

(Table II)). The solid line is *
ce I StokesR R R= +  with *

cIR =7.5 Ǻ, based on Huang & Bartell’s value 

*
cIR  = 7.3 – 7.8 Ǻ [13] derived by modeling the  time-evolution of electron diffraction patterns 

from freezing water clusters. Previous studies found that the self-diffusion constants of many 

different solutes correlate with their ability to increase supercooling capacity [20]. This is 

reasonable because the Stokes radius relates to the microscopic dynamics of the hydrated solute 

at the molecular scale on which ice nuclei form.  

The prediction in Fig. 3 underestimates the exclusion radius eR  for solutes with larger Stokes 

radii.  This may result because the dynamical hydration shell relevant in solvent nucleation may 

be thicker than that relevant in the relatively slow dynamics that dominate solute diffusion and 

the Stokes radius [21].  For example, glucose and trehalose have Stokes radii of 3.5 and 4.7 Å, 

respectively.  When probed on the picosecond timescale [22], corresponding to that for 

rearrangements of the hydrogen bonding network [23] that might be expected to impact 

nucleation, their hydration shell thicknesses are 3.7 Å and 6.5 Å, respectively.  The sum of these 

hydration shell radii and the corresponding Stokes radii (which include a contribution from 

hydration [21]) is indicated by the open symbols in Fig. 3. 

The dynamical hydration shell and its effects on ice nucleation are known in other contexts. 

Computational studies show that there is a ~5.5 Å shell of water with altered structure and 

rotational/translational dynamics on the picosecond timescale surrounding carbohydrates [24]. IR 

spectroscopy of water dynamics in ~nm reverse micelles show that approximately half of the 

water in a 4 nm diameter micelle is "interfacial" while the other half is bulk-like [25], implying a 

5.6 Å interfacial layer thickness. NMR studies of water adsorbed to porous glass show that 2.5 to 

3 monolayers are essentially in a "frozen" amorphous structure even at room temperature, and 

that this fraction remains amorphous as the sample is cooled to freezing temperatures [26]. Water 



confined inside the 2 nm pores of porous glass does not crystallize [27], and crystallizes only 

very slowly in the 6.5 nm channels of certain protein crystals [28].  

In the context of the glass forming ability of systems including metallic glasses, glassy oxides 

and aqueous cryoprotectant solutions, extensive experimental CCR data has been empirically 

correlated using the parameter  

 x

l g

T
T T
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where gT  is the glass temperature, lT  is the liquidus temperature, and xT  is the devitrification 

temperature of the solution [7]. While this empirical correlation works well for the systems and 

concentration ranges from which it was derived, it fails for the less-concentrated cryoprotectant 

solutions reported here. For example, scaling the measured CCR of a 30 % (w/v) glycerol 

solution requires 123 KxT = , well below 148 KgT = [29]. 

The nucleation model proposed here makes no assumptions that limit its applicability to aqueous 

solutions. Equation (7) may thus be expected to hold in arbitrary systems where a favored phase 

nucleates in the presence of a species that must be excluded from the critical cluster. To test the 

generality of Eq. (7), we performed lattice simulations of nucleation in an Ising system below the 

critical temperature in the presence of otherwise non-interacting solutes that were excluded from 

the nucleating phase by hard-wall interactions. The simulations demonstrate that the free energy 

of a cluster containing N  sites is increased by bnNk T  where n  is the volume fraction of solutes, 

consistent with the third term in Eq. (7). Furthermore, when nearest-neighbor interactions 

between the nucleating phase and solutes are included, the basic features of the exclusion radius,

eR , are captured.  

ACKNOWLEDGEMENTS  

This work was supported by the NSF (DMR-0805240 and DMR-1005479) and by the NIH (R01 
GM65981).  

  



References and Notes 

 1.  P. Mazur, Science 168, 939 (1970). 

 2.  H. Hope, Acta Cryst. B 44, 22 (1988). 

 3.  D. W. Rodgers, Structure 2, 1135 (1994). 

 4.  D. M. Murphy, Geophys. Res. Lett. 30, (2003). 

 5.  M. B. Baker, Science 276, 1072 (1997). 

 6.  P. G. Debenedetti, J. Phys. : Condens. Matter 15, R1669-R1726 (2003). 

 7.  Z. P. Lu and C. T. Liu, Phys. Rev. Lett. 91, (2003). 

 8.  V. Berejnov, N. S. Husseini, O. A. Alsaied, and R. E. Thorne, J. Appl. Crystallogr. 39, 
244 (2006). 

 9.  M. Warkentin, V. Stanislavskaia, K. Hammes, and R. E. Thorne, J. Appl. Crystallogr. 41, 
791 (2008). 

 10.  P. Bruggeller and E. Mayer, Nature 288, 569 (1980). 

 11.  I. Kohl et al., Phys. Chem. Chem. Phys. 7, 3210 (2005). 

 12.  L. S. Bartell and J. F. Huang, J. Phys. Chem. 98, 7455 (1994). 

 13.  J. F. Huang and L. S. Bartell, J. Phys. Chem. 99, 3924 (1995). 

 14.  J. M. Hey and D. R. Macfarlane, Cryobiology 33, 205 (1996). 

 15.  J. M. Hey and D. R. Macfarlane, Cryobiology 37, 119 (1998). 

 16.  A. Manka et al., Phys. Chem. Chem. Phys. 14, 4505 (2012). 

 17.  G. P. Johari, J. Chem. Phys. 122, (2005). 

 18.  S. K. Ma,  1 ed., (World Scientific, Philadelphia, 1985), Chap. 11. 

 19.  P. J. Atzberger and P. R. Kramer, Phys. Rev. E 75, (2007). 

 20.  N. Kimizuka and T. Suzuki, J. Phys. Chem. B 111, 2268 (2007). 

 21.  B. Halle and M. Davidovic, Proc. Natl. Acad. Sci. U. S. A. 100, 12135 (2003). 

 22.  M. Heyden et al., J. Am. Chem. Soc. 130, 5773 (2008). 

 23.  R. Kumar, J. R. Schmidt, and J. L. Skinner, J. Chem. Phys. 126, (2007). 



 24.  S. L. Lee, P. G. Debenedetti, and J. R. Errington, J. Chem. Phys. 122, (2005). 

 25.  D. E. Moilanen, E. E. Fenn, D. Wong, and M. D. Fayer, J. Chem. Phys. 131, (2009). 

 26.  K. Overloop and L. Vangerven, J. Mag. Reson. A 101, 179 (1993). 

 27.  J. Rault, R. Neffati, and P. Judeinstein, Eur. Phys. J. B 36, 627 (2003). 

 28.  M. Weik et al., Acta Cryst. D 57, 566 (2001). 

 29.  D. Harran, Bull. Soc. Chim. Fr. I40-I44 (1978). 

 30.  L. Hao and D. G. Leaist, J. Chem. Eng. Data 41, 210 (1996). 
 

 

  



Table I.  Percent weight per volume (%w/v) to molarity conversion factors and maximum 
measured concentrations for each of the eight solutes in Fig. 1.  

Solute MW 
g/mol 

Maximum solute concentration 
% (w/v) M 

ethanol 46.1 24 5.2 
methanol 32.0 32 10.0 
NaCl 58.4 32 5.5 
PEG 200 200 44 2.2 
glycerol 92.1 39 5.0 
ethylene glycol 62.1 46 7.4 
dextrose 180.1 56 3.1 
trehalose 342.3 58 1.7 

 
 



Table II. Measured self-diffusion coefficients and calculated Stokes radii for the solutes studied. 
All measurements were at 298 K.   
 
 
Solute Self-diffusion constant (10-10 m2 s-1) Stokes radius (Å) Reference
Ethanol 12.2 1.99 [30] 
Methanol 15.6 1.55 [30] 
Sodium chloride 16.0 1.52 [20] 
PEG 200 4.86 4.99 [20] 
Glycerol 9.21 2.63 [20] 
Ethylene glycol 11.4 2.13 [20] 
Dextrose 6.75 3.59 [20] 
Trehalose 5.08 4.77 [20] 
 
  



Figure Captions 

Fig. 1. Critical cooling rate (CCR) – the minimum cooling rate to obtain a vitrified sample – of 

aqueous solutions as a function of solute concentration, for each of the 8 solutes studied. Solid 

lines represent exponential fits of the form 0
cCCR CCR e β−= , where c is the solute concentration. 

The fits extrapolate to similar values of ~3 × 105 K/s at c=0 (corresponding to pure water). 

Fig. 2. Schematic illustration of the exclusion volume involved in cubic ice (IC) nucleation. If the 

region inside radius 
cIR  is to be completely free of solutes, the center-of-mass of all solute atoms 

must be excluded from a region of radius 
ce I sR R R= + . Differences in effective solute radii Rs 

are responsible for the differences in slope in Fig. 1.  

Fig. 3. The exclusion radius Re determined for each solute versus the solute's Stokes radius. The 

solid line is the model prediction: *
ce I StokesR R R= + with a critical radius for pure water *

cIR = 7.5 

Å [13]. The open symbols are calculated as *
ce I Stokes HR R R R= + + , where RH is the hydration 

shell thickness measured by THz spectroscopy in [22]. 

 








