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We predict that the near-field radiative heat-transfer ratebetween a cylinder and a perforated surface depends
nonmonotonically on their separation. This anomalous behavior, which arises due to evanescent-wave effects, is
explained using a heuristic model based on the interaction of a dipole with a plate. We show that nonmonotonic-
ity depends not only on geometry and temperature but also on material dispersion—for micron and submicron
objects, nonmonotonicity is present in polar dielectrics but absent in metals with small skin depths.

PACS numbers:

Disconnected bodies of different temperatures can ex-
change energy through stochastic electromagnetic waves [1–
8], a phenomenon known as radiative heat transfer that un-
derlies many naturally occurring and technologically rele-
vant processes [7, 8]. Recent advances in microfabrica-
tion and metrology have enabled experiments that can now
regularly probe this phenomenon at micron and submicron
scales [9, 10]. At such small scales, unusual near-field in-
teractions arise [8], but non-planar geometries in this context
are only just beginning to be explored [11–23]. In this Let-
ter, inspired by our previous work on Casimir repulsion [24],
we demonstrate that thenear-field heat transfer between a
cylinder (or elongated object) and a perforated surface (e.g.
a ring) can varynonmonotonicallywith respect to their mu-
tual separation. This anomalous effect stems primarily from
the contribution of dipolar fields, as illustrated by a heuristic
model in which the cylinder is modeled as a quasi-static dipole
and the ring as an infinitesimally thin plate with a hole. We
find that nonmonotonicity weakens (eventually disappearing)
whenever the geometrical and material parameters of the ob-
jects deviate significantly from the dipolar regime: for cylin-
ders of nearly equal aspect ratio, large ring thicknesses, large
temperatures, or metals with small skin depths (such as gold),
the usual monotonic dependence is observed. Our calcula-
tions reveal that, in contrast to more conventional geometries,
“additive” approximations such as the well-known proximity
approximation cannot predict this effect, even qualitatively.

In the far field (object separationsd much greater than the
thermal wavelengthλT = ~c/kBT ), radiative heat transfer
is dominated by the exchange of propagating waves and is
thus nearly insensitive to changes in separations (oscillations
from interference effects typically beings small [1, 25]).In
the (less studied) near field (d . λT ), not only are inter-
ference effects important, but otherwise-negligible evanescent
waves also contribute flux [7, 8]. Such near-field effects have
been most commonly studied in planar geometries, where the
monotonically increasing contribution of evanescent waves
with decreasingd results in orders-of-magnitude enhance-
ment of the net radiative heat transfer rate (exceeding the far-
field black-body limit at sub-micron separations [8]). Conse-

quently, the net radiative heat transfer rate between objects in
the near field usually increases monotonically with decreasing
d, with only a few exceptions. Nonmonotonic changes have
been predicted to occur in the shallow (d ∼ λT ) and deep
(d ≪ object sizes≪ λT ) near-field regimes due to interfer-
ence ofpropagating wavesandatomic-scalephenomena. For
instance, deviations from monotonicity on the order of 10%
have been predicted (and even experimentally observed [26])
in the plate–plate [1] and nanoparticle–plate [25] geometries
at several microns separations, just as near-field contributions
begin to play a significant role. Even larger deviations have
been predicted to occur at nano and sub-nanometer separa-
tions [8, 27], where macroscopic electromagnetism breaks
down. Thus far, however, little is known about the near-field
heat transfer characteristics of bodies whose shapes differ sig-
nificantly from the planar, unpatterned structures of the past,
leaving open the possibility of geometrically induced (d ∼
object sizes) nonmonotonicity dominated by near-field effects
(d ≪ λT ). Recent theoretical progress along these lines in-
clude predictions for a handful of new geometries, including
spheres [11, 18] and cones [19] suspended above slabs, as well
as patterned surfaces [12–16, 20]. In what follows, we de-
scribe a situation in which near field interactions mediatedby
evanescent wavescause large nonmontonic changes in the net
heat transfer rate between micron-scale bodies at separations
(d ∼ hundreds of nanometers) comparable to the object sizes.

The heat transfer rateH between two objects held at tem-
peraturesT1 andT2 can be expressed in the form [1, 7, 8]:

H =

∫
∞

0

dω [Θ(ω, T2)−Θ(ω, T1)] Φ(ω), (1)

whereΦ is theflux spectrum(the time-averaged flux into ob-
ject 2 due to current sources in object 1), andΘ(ω, T ) =
~ω/[exp(~ω/kBT )− 1] is the mean Planck energy per oscil-
lator at frequencyω and temperatureT . (Note thatΦ = 1 for
black bodies that capture all of one another’s radiation.) We
computeΦ by exploiting two recent computational methods:
a fluctuating surface-current (FSC) formulation involvingthe
solution of an integral equation at each frequency [22], anda
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FIG. 1: Heat-transfer rateH from a room temperature ring to a
cylinder (or sphere) of fixed radiusR = 0.1µm and aspect ratio
Λ = L/2R held atT = 0, as a function of their center–center sep-
arationd. H is normalized by the heat radiation of the isolated ring
Hr. Both objects are lossy dielectrics withRe ε ≈ 12 (see text). In-
set shows the flux spectrumΦ(ω) of theΛ = 5 configuration at three
separations, and also of the isolated cylinder and ring (dashed lines).

Langevin finite-difference time-domain (FDTD) formulation
in which one explicitly time-evolves Maxwell’s equations in
response to (broad-bandwidth) stochastic sources inside the
bodies [15]. In order to distinguish the effects of geome-
try from those of material dispersion, we begin by consider-
ing a simple model material: a lossy dielectric with a broad
(low-dispersion) absorption peak, given byε(ω) = ε∞ −
σ/(ω2

0
− ω2 − iγω), with ε∞ = 12.5, σ = 4× 102 (c/µm)2,

ω0 = 0, andγ = 60 (c/µm), corresponding to roughly-
constantRe ε ≈ 12 and largeIm ε & 1 over relevant fre-
quencies. Later, we consider realistic materials and show that
material dispersion also plays a crucial role.

We previously studied the radiation ofisolatedcylinders
and rings [22]. Here, we consider the new phenomena that
arise when these objects are brought into close proximity so
that near-field effects are present. The dashed green lines
in the inset of Fig. 1 show the flux spectrum of an iso-
lated cylinder (Φc) of radiusR = 0.1µm and aspect ratio
Λ = L/2R = 5, and of an isolated ring (Φr) of outer (inner)
diameterD = 2µm (W = 0.8µm) and thicknessh = 0.05D,
as a function of frequency (units of2R/λ). In this long-
wavelength limit (λ ≫ R), largeIm ε and the absence of ge-
ometric and material resonances means that both objects emit
significantly less than an ideal black body (Φc ≪ Φr ≪ 1).

The inset in Fig. 1 also shows the flux spectrumΦ when
the two objects are brought into close proximity (solid lines),
at three different center–center separationsd, showing dra-

matic changes from the isolated case.Φ is computed via
both FDTD (noisy curves) and FSC (smooth curves) meth-
ods, showing excellent agreement; the remaining calculations
use FSC only. Compared to isolated objects, the increasing
contribution of evanescent waves in both objects leads to an
overall increase in the flux at low frequencies. [Note that the
peak inΦ atλ ≈ 10−3R is a consequence of material disper-
sion: the loss tangent of the material∼ Im ε/Re ε → ∞ as
λ → ∞, leading to zero radiation; the peak in the spectrum
occurs at the cross-over wavelength for whichIm ε ∼ Re ε.
Low-frequency cut-offs in the near-field enhancement occur
in highly conductive materials, such as gold (below).] Most
interestingly, however, the enhancement inΦ here does not
increase monotonically with decreasingd: Φ increasesfrom
d = ∞ to d ≈ 0.4L, butdecreasesfrom d ≈ 0.4L to d = 0.

To explore the geometry dependence of this near-field be-
havior, we now examine the overall heat-transfer rateH as
a function ofd instead of the spectrum. In particular, Fig. 1
showsH from a room-temperature ring to a cylinder atT = 0,
for multiple aspect ratiosΛ. For comparison,H is normal-
ized to the radiation rate of the isolated ringHr. For large
anisotropyΛ = 5, H first increasesas the two objects ap-
proach each other due to the usual near-field enhancement,
and then decreases asd → 0, peaking at a critical separa-
tion dc ≈ 0.4L. Unlike previously studied structures involv-
ing non-interleaved objects, the heat transfer in this geome-
try does not diverge asd → 0: although the two objects
approach each other in this limit, they never touch. Also,
H → 0 asd → ∞ due to the finite size of the two objects.
As Λ decreases (keepingR fixed), corresponding to increas-
ingly isotropic cylinders, the nonmonotonicity becomes less
pronounced, and is completely absent in both theΛ = 1 con-
figuration (small anisotropy) and for a sphere (open red cir-
cles). As expected, there is an overall decrease inH with
decreasingL due to the decreasing volume of the cylinder.
Nonmonotonicity also slowly disappears as the ring thickness
h increases toh ≈ 0.5L, leaving a relatively wide range
of thicknesses over which the effect can be observed. Fur-
thermore, as expected, the strength of the nonmonotonicity
H(dc)/H(0) grows larger as the cylinder surface approaches
the rim of the ring (corresponding to largerR or smallerW )
due to usual near-field effects, and also for largerD due to
the larger surface area. We also find that nonmonotonicity
persists even when the cylinders are shifted laterally (shifts
< 0.5W ), an asymmetric configuration that is likely to occur
in experiments. Finally, we find thatH(dc)/H(0) increases
ash,R, L → 0 (for fixedΛ), as seen below (Fig. 2).

Cylindrical symmetry allows us to decomposeΦ into az-
imuthal angular componentsm (fields∼ eimθ), implemented
in FDTD with cylindrical coordinates. Our calculations reveal
(not shown) that most (though not all) of the nonmonotonic
dependence comes from the contribution of dipolar (m = 0)
fields, which dominate the heat transfer at these long thermal
wavelengthsλT ≫ R,L. At suchλ, a cylinder with large
Λ will act like a fluctuating dipole oriented mainly along the
symmetry axis of the ring—strictly speaking, this is true only
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FIG. 2: Heat-transfer rateH between the ring and cylinder of Fig. 1,
for fixed cylinder aspect ratioΛ = 5 and thin ring thicknessh =
5 × 10−3D, as a function ofd and for multiple cylinder lengthsL.
H is normalized by the radiation of the isolated ringHr multiplied
by the cylinder areaAc. The shaded region denotes separations over
which the two objects are interleaved. Top inset shows the critical
separationdc of largestH as a function ofL, with shaded areas again
denoting interleaved configurations. Bottom inset showsH (solid
lines) along withImGii at the cylinder location (dashed lines) in the
limit h,R,L → 0, as computed by a heuristic model (see text).

for separations≫ R,L. Since the fields generated by a fluc-
tuating dipole are polarized mostly along the dipole axis and
since current fluctuations in the thin ring are polarized mostly
along the plane of the ring, it follows that the fields induced
by a longz-oriented cylinder will do less work on currents in
the ring whenever the objects are nearly co-planar (d → 0).

We quantify this argument by focusing on a simple (al-
beit heuristic) model in which the cylinder is modeled as a
dipole of electric polarizabilityαE(ω) and the ring as an
infinitesimally thin plate with a hole. For convenience, we
only consider the non-retarded (quasi-static) limit of small
dipole separationsd ≪ λT , in which case the heat trans-
fer rate between the dipole and plate can be expressed as
Hd =

∫
dω [Θ(ω, T1)−Θ(ω, T2)] Φd(ω), where the flux

spectrum is given by [6, 28, 29]:

Φd(ω) =
2

π

∑
i

ω2 Im[αE
i (ω)] Im [Gii(rd, rd)] , (2)

Here,Gij(r, r
′) is the electric Green’s function of the plate—

the electric field in theith direction atr due to a dipole source
in thejth direction atr′—andrd is the location of the dipole.
The calculation ofGij for a perfectly conducting, infinitely
thin plate was carried out in Ref. 30 for the purpose of comput-
ing the Casimir-Polder force in that idealized system. How-

ever, because perect conductors do not radiate (ImGij = 0),
we merely exploit that expression as the starting point of a
quasi-static perturbative calculation in which the plate is as-
sumed to have asmall amount of absorption. In particular,
we are interested in computing the dissipated power or Ohmic
losses on a plate with small but finite conductivityσ, given the
quasi-static fields at the surface of the perfectly conducting
plate. Following Ref. 31, the resistive losses on the plate are
∼ ImGjj(rd, rd) ∼

∫
d2rσ(r)|G0

j (r, rd)|2, whereG0

ij is
the electric Dyadic Green’s function of the unperturbed (per-
fectly conducting) plate, and the integral is performed over
the plate surface. It turns out thatG0 exhibits non-integrable
singularities at the rim of the hole, a well-known artifact of
the idealized nature of corners and wedges in electromag-
netism [31]. While the electromagnetic energy corresponding
to these fields is finite when integrated over all space, the sin-
gularity in the fields is problematic for the perturbation theory
since the form of the perturbation considered here requires
thatG0 be integrated only over the plane of the plate. Essen-
tially, this model does not account for the finite thickness of
the plate, and consequently fails to capture effects associated
with the finite penetration or skin-depthδ = c/(ω Im

√
ε) of

fields. Therefore, we useδ as a cutoff lengthscale to regularize
the integral near the rim of the hole. Surprisingly, and despite
its many shortcomings, this heuristic model captures most of
the features of interest.

The bottom inset in Fig. 2 shows the computedImGii

and resulting heat transfer rateHd (in arbitrary units) from a
room-temperature plate of conductivityσ = ω Im ε, infinites-
imally small thicknessh → 0, and hole diameterW , to a
small cylinder of radiusR ≪ W and electric polarizability
α

E held atT = 0, as a function of their separationd. Hd is
computed by Eq. (2) using the dipole model above, with the
polarizability of the dipole taken to be that of a uniform pro-
late spheroid [29] of aspect ratioΛ = L/2R and permittivity
ε (same as above). At larged ≫ W , the presence of the hole
in the plate is negligible and henceImGii → 0 in the usual
monotonic fashion [31]. At smalld . W , the hole dramati-
cally alters the interaction, making it highly orientationdepen-
dent:ImGzz is nonmonotonic withd, achieving its maximum
atd ∼ W , whereasImGxx is strictly monotonically increas-
ing with decreasingd. Essentially, the electric field lines ofz-
andx-oriented dipoles lie mostly perpendicular and parallel
to the plate, respectively, leading to weaker and stronger in-
teractions asd → 0. SinceImGzz ≪ ImGxx at separations
d . W , it follows thatHd will become nonmonotonic at large
enough anisotropiesΛ (equivalently, forαE

z /α
E
x ≫ 1). For

Λ = 5, corresponding to a highly anisotropic object, one ob-
serves the expected nonmonotonic behavior, with the critical
separationdc ≈ 0.3W determined byW . As before, non-
monotonicity decreases with decreasingΛ, disappearing com-
pletely in the limitΛ → 1 of an isotropic (spherical) object
with polarizabilityαE = 4/3πR3(ε− 1)/(ε+2). In compar-
ison with Fig. 1, we observe that the simple model quantita-
tively captures the onset of nonmonotonicity atΛ & 2. Since
the model represents a point-dipole limit, we also compare
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to exact calculations for fixedΛ = 5 by lettingL → 0 and
h = 5 × 10−3D, as shown in Fig. 2. While nonmonotonic-
ity is present for allL, the scaling of the critical separationdc
with L changes qualitatively asL → 0. Specifically, as shown
by the top inset of Fig. 2,dc ≈ 0.3W for L ≪ W , in quanti-
tative agreement with the dipole model, whiledc ≈ 0.4L for
L ≫ W , with the cross-over regime occurring atL ≈ 0.5W .
We find that forL . 0.8W , the onset of nonmonotonicity (dc)
occurs before the two objects are interleaved, i.e. when there
is aseparating planebetween the objects.

Aside from geometry, changes coming from either temper-
ature or material dispersion leading to deviations from the
ideal dipole regime can also weaken nonmonotonic behavior.
Thus far, we have restricted ourselves to studying micro-scale
bodies near room temperature (which emit preferentially at
infrared frequencies), corresponding to large thermal wave-
lengthsλT ≫ R. At larger temperatures (λT . R) however,
such bodies can no longer be well described as dipole emit-
ters, and thusΦ no longer exhibits nonmonotonic behavior.
We find that nonmonotonicity persists at temperatures well
beyond the mereT ≈ 300 K considered here, so long as the
feature sizes of the objects involved remain at or below the
micron scale. Realistic materials often exhibit substantial ma-
terial dispersion at or near infrared wavelengths, and thiscan
also significantly alter the dipole picture above. This situa-
tion is depicted in Fig. 3, which showsH for various material
configurations, including metals (gold and indium tin oxide)
and polar dielectrics (doped silicon). (The Au and ITO disper-
sions are determined by Drude models with plasma frequen-
ciesωp = 1.367× 1016 rad/s andωp = 1.4739× 1015 rad/s,
and relaxation ratesγ = 5.317×1013 rad/s andγ = 1.5347×
1014 rad/s, respectively, whereas the doped silicon dispersion
is given by the model of Ref. 32.) Interestingly, we find that
nonmonotonicity is completely absent for the Au and highly-
doped silicon (1022cm−3) configurations, and present in the
ITO and lesser-doped silicon (5× 1018cm−3) configurations.
The reason for the discrepancy comes from the fact that highly
conductive metals and polar dielectrics respond very differ-
ently to incident light. In particular, for metals, the electric
dipole approximation (above) breaks down for skin depths
δ ≪ R,L: in that limit, eddy currents induced on the sur-
face of the metallic objects also lead to largemagneticdipole
moments [28, 29], with magnetic polarizabilitiesαH ≫ α

E .
Unfortunately, the interaction between a magnetic dipole mo-
ment and a plate does not exhibit the desired nonmonotonic
effect (at least in this geometry), which explains the results
in the case of Au and highly-doped silicon cylinders, whose
skin depthsδ ≈ 10−2µm ≪ R at infrared wavelengths. If
we scale the entire structure down to much smaller scales
R,L ≪ δ (not shown), we find that nonmonotonicity is re-
stored. Thus, for highly conductive materials, one obtainsthe
desired nonmonotonic effect only forh,R, L ≪ δ ≪ λT .

The insets in Fig. 3 show the flux spectra of the various ma-
terial configurations at three separations (labeledA, B, and
C), along with normalized plots of the mean Planck energy
per oscillator at room temperature (dashed lines), showingthe
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FIG. 3: Heat transfer rateH between the ring and cylinder of Fig. 1,
for fixed cylinder aspect ratioΛ = 5, as a function of separationd. H
is normalized to the radiation rate of the isolated ringHr, and plotted
for multiple material configurations. Insets show the corresponding
flux spectraΦ(ω) at three different (labeled) separations.

various frequency contributions. The Au and highly-doped
siliconΦ are monotonic withd at all frequencies. On the other
hand, ITO and lesser-doped silicon are nonmonotonic withd
only at certain frequencies. For any material,Φ is monotonic
at high frequencies (λ ≪ R,L), where the cylinder no longer
acts as a dipole, but this transition occurs even more rapidly
for ITO (which is only nonmonotonic for low frequencies) be-
cause of the aforementioned skin-depth effect. For silicon, the
situation is greatly complicated by the presence of multiple
geometricresonances (ε has a single absorption peak), aris-
ing from the ability of the fields to probe the interior as well
as the surface of the dielectric. It turns out that only two of
the resonant peaks in this case exhibit nonmonotonicity with
d, corresponding to resonances with the necessary dipole-like
polarizations.

Similar and even more pronounced nonmonotonic behav-
iors should arise in other geometries, so long as the suspended
objects (regardless of shape) are sufficiently anisotropic(be-
have dipole-like) and radiate primarily in the direction orthog-
onal to the patterned surface. An interesting structure to ex-
plore in the future is a nanowire array suspended above a pe-
riodically patterned thin film.
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