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A calculation of the second-order (rescattering) term in the S-matrix expansion of above-threshold
ionization is presented for the case when the binding potential is the unscreened Coulomb potential.
Technical problems related to the divergence of the Coulomb scattering amplitude are avoided in the
theory by considering the depletion of the atomic ground state due to the applied laser field, which
is well defined and does not require the introduction of a screening constant. We focus on the low-
energy structure (LES), which was observed in recent experiments with a mid-infrared wavelength
laser field. Both the spectra and, in particular, the observed scaling versus the Keldysh parameter
and the ponderomotive energy are reproduced. The theory provides evidence that the origin of the
structure lies in the long-range Coulomb interaction.
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Above-threshold ionization (ATI) is an important pro-
cess in the interaction between atoms and an intense laser
field [1, 2]. The photoelectron energy spectrum shows
that ATI occurs either in the form of multiphoton ion-
ization or tunneling ionization. These two regimes can
simply be distinguished by the value of the Keldysh pa-
rameter γ =

√

Ip/2Up [3], where Ip is the ionization po-
tential of the atom and Up the ponderomotive energy of
the laser field. In the multiphoton regime where γ > 1,
the photoelectron spectrum consists of individual ATI
peaks spaced by the energy of one photon with monoton-
ically decreasing amplitude [1, 4, 5]. In the tunneling or
over-the-barrier ionization regimes where γ ≪ 1, the ATI
photoelectron distribution is consistent with the classical
simple-man picture [6, 7]. The distribution in this case
has an exponentially decreasing amplitude and a cutoff
energy at 2Up. Beyond 2Up a flat plateau emerges and
extends to a cutoff at 10Up [8] due to backscattering of
the ionized electron off the core [9, 10]. The 2Up cutoff is
well described by the first-order S-matrix theory [5], of-
ten referred to as the “strong-field-approximation” (SFA)
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[3, 5, 11]. However, this approximation cannot account
for the high-energy plateau and the low-energy structure
(LES), which is the focus of this Letter.

One finding deviating from the SFA prediction is the
observed low-energy momentum distribution [12, 13] of
the recoiling ions. Several explanations have been pro-
posed and are still under debate, tracing the effect to
the long-range Coulomb potential [14–16], Freeman res-
onances [17, 18], or the persistence of ATI peaks in the
tunneling regime [19, 20]. Recently, another unexpected
low-energy structure (LES) has been reported in the ATI
electron-energy distribution, which becomes most signif-
icant at longer wavelength or decreasing γ < 1 [21, 22].
This LES is in stark contrast to the prediction of the
SFA model. A semi-classical model has qualitatively at-
tributed the effect to the long-range Coulomb potential
[22]. Calculations based on numerical solution of the 3D
time-dependent Schrödinger equation (TDSE) [21] pro-
vide quantitative agreement but little physical insight.
In this Letter, we present a heuristic analysis showing
that the LES structure, which cannot be accounted for
by the lowest-order S-matrix theory (i.e., the SFA), is
reproduced by the second-order amplitude. The good
agreement between our heuristic theory and the experi-
mental data supports the conclusion that the LES can be
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attributed to the dominance of the long-range electron–
parent-ion Coulomb interaction in the tunneling regime.
In our calculation, the Hamiltonian related to pho-

toionization is given by VA + V , with VA(t) the laser-
atom interaction and V the electron-parent ion Coulomb
interaction. The S-matrix expansion is [5]

(S − 1)fi = T (1) + T (2) + ...

=i

∫

∞

−∞

dt〈ΨAf
(p, t)|VA(t)|ϕi(t)〉 (1a)

+ i2
∫

∞

−∞

dt

∫ t

−∞

dt′
∫

d3p′〈ΨAf
(p, t)|V |ΨA(p

′, t)〉

× 〈ΨA(p
′, t′)|VA(t

′)|ϕi(t
′)〉+ ..., (1b)

where |ϕi(t)〉 = |ϕ0〉e
iIpt is the atomic ground state with

Ip the ionization potential and
∣

∣ΨAf
(p, t)

〉

the Volkov
wavefunction with the final electron momentum p. The
first term (1a) of this expansion is the standard SFA,
which describes the “direct” electrons, which after they
have been liberated do not interact with the binding po-
tential anymore. The second term allows for just one such
“rescattering” interaction, and each subsequent higher-
order term contains one additional interaction V , with
propagation in the presence of the laser field (Volkov
propagation) in between.
The second term (1b) generates the ATI plateau. It

exhibits a five-fold integration – two over time and one
over the intermediate vector momentum – provided that
the matrix elements of V and VA can be evaluated ana-
lytically. Normally, these integrations are carried out by
the method of steepest descent, which affords close con-
tact with the classical “simpleman” model via the con-
cept of quantum orbits. However, for very low momenta
p, which are at the focus of this Letter, the reliability
of this approximation is not clear. If we commute the
integrals over the ionization time t′ and the rescattering
time t with the one over the intermediate momentum p′,
then the former two can be exactly evaluated and the
rescattering amplitude (1b) is converted into the double
sum

T (2) ≡
∑

N

δ(p2/2− EN )

∫

d3p′〈p|V |p′〉

×
∑

n

1

p′2/2− En − iǫ
fN,n(p,p

′), (2)

where En ≡ nω − Ip − Up with Up the ponderomotive
potential and Ip the ionization potential. The δ func-
tion comes from the integration over t and the energy
denominator is the result of the integration over t′. The
functions fN,n(p,p

′) are sums over Bessel functions. In
the current context, it is only important that they are
nonsingular when p → p′.
For a negative ion, where the electron is bound by

a short-range potential, e.g. the Yukawa potential
exp(−κr)/r, this procedure is straightforward. We have
〈p|V |p′〉 ∼ [(p−p′)2+κ2]−1, and the spectra calculated

from Eq. (2) for suitable κ agree very well with the exper-
imental data [23]. The second-order term T (2) is much
smaller than the first-order term T (1), and the higher-
order terms are completely insignificant. For a Coulomb
potential, however, we encounter a divergence, which
originates from the singular behavior of the Coulomb
scattering amplitude in the forward direction, which is
now 〈p|V |p′〉 ∼ (p−p′)−2. Namely, for N = n the inte-
gral over p′ in Eq. (2) is now logarithmically divergent.
This becomes clear if we substitute the energy denomi-
nator according to 1/(x − iǫ) = P (1/x) + iπδ(x). The
principal part does not contribute while the δ function
causes p = p′ and, hence, the divergence mentioned. A
second related problem is that, for the Coulomb poten-
tial, numerical estimates indicate that for low momenta
T (2) is larger than T (1), and the higher-order terms are
likely to be larger still.
The latter situation is reminiscent of field-free

Coulomb scattering, where the exact scattering ampli-
tude is (see, e.g., Ref. [24])

f(θ) = −
β

2p sin2(θ/2)
exp

{

−iβ ln[sin2(θ/2)]
}

f0, (3)

with f0 = exp[2i argΓ(1 + iβ)], β = Z/p, θ the scat-
tering angle, and Z is the product of the projectile and
the target charge. In an expansion in powers of Z, the
lowest-order gives the Rutherford amplitude. Higher-
order terms exhibit logarithmically higher and higher or-
ders of the forward-scattering singularity at θ = 0 so that
each term is larger in magnitude than the previous one.
However, as shown by Eq. (3) all of these terms sum to
a phase, which drops out of the scattering cross section,
which is proportional to |f(θ)|2, thus restoring the first-
order Rutherford result. Terminating the expansion in
terms of Z at any finite order beyond the first generates
a result that is inferior to the one of first order.
This analysis cannot directly be repeated in the present

much more complicated time-dependent case. However,
it is very suggestive that the same mechanism is also hid-
den in the expansion (1). With this in mind, we focus on
the second order T (2) and ignore the higher-order terms.
As mentioned above, evaluation of the second-order term
is still impeded by the Coulomb-related divergence. On
the other hand, one might argue that an exact computa-
tion should not exhibit any divergence, for the following
reason: since the liberated electron starts its orbit near
its parent ion, when it returns it will scatter at a moder-
ate impact parameter, so it will never actually experience
the infinite range of the Coulomb potential. Therefore,
one is physically justified to cut off the Coulomb poten-
tial at a safe distance away from the atom, thereby elimi-
nating any divergence and accomplishing a term-by-term
convergence of any expansion [25].
In this Letter, in the time-dependent case, we will take

a different route. As it will turn out, the fact that the
atomic ground state has a finite life time due to ionization
is sufficient to remove the divergent denominators that
cause the problems. Namely, in the S-matrix theory,
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the depletion of the bound state can be introduced by
inserting a decay factor into the phase of the transition
matrix element (1b), by replacing [26]

Ipt
′ → Ipt

′ +
i

2

∫ t′

−
T
2

dτw(τ), (4)

where we consider the interaction between the atom
and the laser pulse adiabatically turned on at time
−T/2. Here, in analogy with Ref. [26], w(τ) is the time-
dependent ionization rate of the ground state. Using the
saddle-point approximation in the integral over t′ in (1b),
one now gets the following equation for the tunneling pro-
cess

1

2
[p′ −A(t′)]

2
= −Ip −

i

2
w(t′). (5)

The real part of the additional term w(t′) explicitly gives
a finite width to the photoelectron momentum, as follows:
we approximate w(t′) by the time-independent depletion
rate Γ of the ground state. Then, the energy denominator
in Eq. (2) is replaced by p′2−En−iΓ/2, which is sufficient
to remove the divergence, since p and p′ are real. Note
that the solutions t′ of the saddle-point equation (5) are
complex (as they already are for Γ = 0) [26], which is
related to the electron being liberated by tunneling.
The bottom line of this procedure is that introducing

into the theory an element of reality – the fact that the
ground state decays due to the action of the laser field
– is sufficient to remove all problems and to generate
term-by-term convergence. Moreover, as shown in Ref.
[26], the depletion of the ground state is introduced in a
self-consistent manner. For given laser parameters, the
ground-state decay rate Γ is a well-defined number, which
must be determined, in principle, in a self-consistent fash-
ion in parallel with the expansion (1); so there is no need
to guess a screening constant for the calculation. Since
it is impossible to calculate the whole S-matrix expan-
sion, we need to obtain a value of Γ by different means.
We employ the Coulomb-corrected SFA, which is known
to be quantitatively consistent with a numerical solution
of the TDSE [27]. Equally well, we could have used the
TDSE or inserted a value deduced from experiment. We
remark that the calculated spectrum is not very sensitive
to the value of Γ, as long as Γ is small which is the case
for the intensity chosen in this paper.
The experiments were conducted using argon and

xenon, under various laser conditions. A mid-infrared
beam with a 1/e2 diameter of 15 mm is focused by a
100 mm focal-length CaF2 lens into a vacuum chamber
housing a 54 cm time-of-flight electron/ion spectrometer.
The 40-mm-diameter µ-channel plate detector provides a
collection angle of 4 degrees. More details can be found
in Refs. [21, 28]. For argon, the LES is studied for fixed
laser wavelength (2 µm) and three different intensities
[see Fig. 1(b)]. For xenon in Fig. 1(d), Up is held con-
stant by varying both wavelength (1.7 µm, 2 µm, and 2.3
µm) and intensity. Figure 1(f) shows results for xenon
for fixed wavelength (3.6 µm) and different intensities.

For these various conditions, the theoretical results
given by the second-order amplitude T (2) [29] reproduce
the low-energy structure (left panels of Fig. 1) observed
in the experiments (right panels of Fig. 1) while the
structure is absent in the first-order calculations, i. e.,
T (1) (dashed lines; all first-order results are shifted so
that they agree with the second-order calculation at en-
ergies above the LES). It is noteworthy that for the best
consistency between experiment and theory, laser inten-
sities used for the theoretical evaluations are 30% to 50%
less than those used in the experiments. This discrepancy
may be partly due to uncertainty in the experimental in-
tensity calibration (20%) and focal volume distribution
averaging (a Gaussian distribution is assumed in the cal-
culation). Moreover, as discussed above, the higher-order
terms neglected in the S-matrix expansion may also con-
tribute.
Two interesting features are apparent in Fig. 1: (i)

the experimental studies show – and this is reproduced
by the calculations – that the high-energy boundary EH

of the LES is well defined and has a strong dependence
on the intensity; (ii) the profile of the LES remains the
same for fixed Up, irrespective of the laser wavelength
[see Figs. 1(c) and (d)]. In Ref. [21] it was observed that
EH ∝ γ−1.8 regardless of the species, which is consistent
with available TDSE calculations. However no clear in-
terpretation was offered. The present calculation predicts

the scaling EH ∝ γ−1.5 or, alternatively, EH ∝ U
3/4
p

(Fig. 2). Neither the calculation nor the available data
allow us to discriminate between these two scalings. It
is noteworthy that the systematic discrepancy between
theoretical and experimental results due to, e.g., the cal-
ibration of intensity etc., does not affect the scaling law.
According to our model, the LES originates from the
photoelectron–parent-ion interaction. If the effect of the
Coulomb potential were independent of the electron ki-
netic energy, EH would scale as γ−2 or Up. However,
since the effect decreases with increasing kinetic energy,

the scaling reduces to about γ−1.5 or U
3/4
p . The second-

order S-matrix calculation therefore sheds some new light
on the scaling and allows us to appreciate the dependence
of the Coulomb effect on the photoelectron energy.
A crucial question is under which conditions the LES

becomes observable in the ATI spectrum. Our analysis of
the scaling of the upper boundary EH of the LES shows
that it is located at an energy much below Up. This
implies that the LES is well developed only when Up is
sufficiently large. Moreover, to distinguish the LES from
the ATI peaks in the spectrum requires Up ≫ ω (the
laser frequency). These conditions are usually fulfilled in
the tunneling regime and, in this regime, the individual
ATI peaks, which obstruct the visibility of the LES, are
always smeared out due to focal-volume averaging.
Although the theory proposed in this Letter consis-

tently explains the LES profiles observed in recent tun-
neling ionization experiments [21, 22], several questions
remain to be resolved. One concerns the significance of
the higher-order terms in the expansion (1). Surely, in
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FIG. 1: Low-energy photoelectron energy spectra of Ar [(a)
and (b)] and Xe [(c), (d), (e), and (f)] in a mid-infrared laser
field. Panels (a), (c) and (e): calculated from Eq. (1b) (solid
line) and (1a) (dashed line); (b), (d) and (f): experimental
results.
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FIG. 2: The dependence of the LES high-energy boundaryEH

on the Keldysh parameter γ and the ponderomotive energy Up

for various atoms and wavelengths. Left column: theoretical
results; right column: experimental results.

the present time-dependent case they will not merely con-
tribute a phase as they do for time-independent Coulomb
scattering [Eq. (3)]. In addition, although the two exper-
iments [21, 22] agree on the structure of the LES, Ref.
[22] reports a sharp peak below 1 eV — definitely be-
low the LES — in all of the measurements regardless
of laser wavelength and intensity, which was absent in
Ref. [21] as well as in the theoretical calculation in this
paper. This peak, which may be referred to as the very-

low-energy structure (VLES) [30], was also reproduced
in semi-classical and TDSE analysis, in which it was at-
tributed to the relatively strong influence of the Coulomb
potential on the outgoing photoelectrons with low kinetic
energy [22, 30, 31]. This semi-classical effect may in our
model be related to multiple scattering of the photoelec-
tron in the Coulomb field of the parent ion. Our current
second-order analysis did not generate this peak, suggest-
ing it may be a consequence of the high-order terms here
neglected. This will be pursued in future work.

How does the present simulation of the LES compare
with earlier explanations? Owing to the peculiar nature
of the Coulomb potential, this question is not easy to an-
swer. Apparently, our theory – if interpreted in terms of
the saddle-point approximation and the standard quan-
tum orbits – does not incorporate the effect of the binding
potential on the trajectories of the liberated electrons,
which appears as the origin of the LES in Refs. [31–34].
This would imply that first-order Coulomb scattering of
plane-wave electrons is sufficient to generate the LES.
However, (1) we did not use the saddle-point approxima-
tion and, moreover, (2) the latter yields for low energy
additional very short orbits (the so-called L-orbits [35])
whose significance has not been explored in any detail.
It is possible that in a quantum-mechanical S-matrix de-
scription of ATI the interplay of the laser field and the
Coulomb field is already satisfactorily captured in the
first Born approximation.

In summary, a calculation of the lowest-order rescat-
tering term (analogous to the lowest-order Born approxi-
mation) in a quantum-mechanical S-matrix expansion of
the ionization amplitude was presented and compared
with extensive experimental data for various atoms,
wavelengths, and intensities, which display the recently-
discovered low-energy structure (LES). The calculation
was carried out for very low momenta of the liberated
electron and for an unscreened Coulomb potential. It re-
produces many features of the data, including their wave-
length and intensity dependence and the corresponding
scaling. Technically, divergences due to the long-range
Coulomb potential, which are normally encountered in
high-order terms of the S-matrix expansion, were re-
moved by taking into account the actual value of the
depletion of the atomic ground state due to ionization.
It is proposed that to some extent the lowest-order rescat-
tering term provides an ”effective” description of forward
rescattering and that the inclusion of higher-order terms
may neither be necessary nor even desirable, in the same
way that the first-order Born approximation yields the
exact Coulomb-scattering cross section.
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Dorn, C. D. Schröter, J. R. Crespo Lopez-Urrutia, C.
Hoehr, H. Rottke, C. Trump, M. Wittmann, G. Korn,
and W. Sandner, Phys. Rev. Lett. 91, 113002 (2003).

[14] K. I. Dimitriou, D. G. Arbo, S. Yoshida, E. Persson, and
J. Burgdörfer, Phys. Rev. A 70, 061401(R) (2004).

[15] Z. Chen, T. Morishita, A.-T. Le, M. Wickenhauser, X.-
M. Tong, and C. D. Lin, Phys. Rev. A 74, 053405 (2006).

[16] L. Guo, J. Chen, J. Liu, and Y. Q. Gu, Phys. Rev. A 77,
033413 (2008).

[17] A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus,
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[35] D. B. Milošević and W. Becker, Phys. Rev. A 66, 063417
(2002).


