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Anisotropic flow coefficients v1-v5 in heavy ion collisions are computed by combining a classi-
cal Yang-Mills description of the early time glasma flow with the subsequent relativistic viscous
hydrodynamic evolution of matter through the quark-gluon plasma and hadron gas phases. The
glasma dynamics, as realized in the IP-Glasma model, takes into account event-by-event geometric
fluctuations in nucleon positions and intrinsic sub-nucleon scale color charge fluctuations; the pre-
equilibrium flow of matter is then matched to the music algorithm describing viscous hydrodynamic
flow and particle production at freeze-out. The IP-Glasma+music model describes well both trans-
verse momentum dependent and integrated vn data measured at the Large Hadron Collider (LHC)
and the Relativistic Heavy Ion Collider (RHIC). The model also reproduces the event-by-event dis-
tributions of v2, v3 and v4 measured by the ATLAS collaboration. The implications of our results
for better understanding of the dynamics of the glasma as well as for the extraction of transport
properties of the quark-gluon plasma are outlined.

Heavy ion collisions at the Relativistic Heavy Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC)
uniquely allow for systematic exploration of the high tem-
perature many-body dynamics of a non-Abelian quan-
tum field theory. Particularly intriguing is the prospect
of disentangling the non-equilibrium strongly correlated
dynamics of the early time glasma regime from those of
late stage nearly equilibrated quark-gluon plasma and
hadron gas phases by measurements of anisotropic flow
harmonics vn at both RHIC [1, 2] and LHC [3–5].

An excellent candidate for providing initial conditions
for systematic flow studies is the IP-Glasma model de-
scribed in detail in Refs. [6, 7]. It combines the IP-Sat
(Impact Parameter Saturation Model) model [8, 9] of
high energy nucleon (and nuclear) wavefunctions with the
classical Yang-Mills (CYM) dynamics of the glasma fields
produced in a heavy-ion collision [10–13]. We note that
the IP-Sat model provides a good description of small x
HERA deeply inelastic scattering (DIS) data off protons
and fixed target nuclear DIS data [14]. Prior implemen-
tation of the IP-Sat model in proton-proton and nucleus-
nucleus collisions at the LHC using a k⊥-factorized ex-
pression approximating CYM dynamics was shown to
give good agreement with bulk features of data [15]. The
upcoming p+Pb run at the LHC should provide further
constraints on the dynamics of the IP-Glasma model, in
particular the energy dependence of the saturation scale
Qs.

In this letter, we couple the IP-Glasma model of the
classical early time evolution of boost-invariant config-
urations of gluon fields to a relativistic hydrodynamic
description of the system, using the energy density and
flow velocity in the transverse plane at the switching
time τswitch ∼ 1/Qs as input [16]. The hydrodynamic
evolution in each event is described by music [17–20], a
3+1 dimensional relativistic viscous hydrodynamic sim-

ulation [21] that uses the Kurganov-Tadmor algorithm
[22]. While this matching of glasma dynamics to vis-
cous hydrodynamics is a significant improvement rela-
tive to previously employed initial conditions for heavy
ion collisions, early stage dynamics is not fully included.
Most notably, the hydrodynamic viscous tensor Πµν is
too large to be described self-consistently by a gradient
expansion. Instabilities triggered by quantum fluctua-
tions, and subsequent strong scattering of over-occupied
fields, may lead to rapid quenching of Πµν to reason-
able values justifying the use of viscous hydrodynamics
already at early times. In this letter, we will assume such
an efficient mechanism to be at work and set the initial
value of Πµν to zero. We note that one could also choose
the Navier-Stokes value for the initial Πµν , however, it
will be very anisotropic, similar to the value given by the
calculated T µν

CYM
. We leave a detailed study of the de-

pendence on changes in the initial Πµν for future work
[23].

Recent progress in computing early-time quantum
fluctuations will help eliminate this systematic uncer-
tainty [24–28].

When we switch from the CYM description to hydro-
dynamics we construct the fluid’s initial energy momen-
tum tensor T µν

fluid
= (ǫ+ P)uµuν − Pgµν +Πµν from the

energy density in the fluid’s rest frame ε, the flow veloc-
ity uµ, and, using an equation of state, the local pressure
P at each transverse position. ε and uµ are obtained
by solving uµT

µν

CYM
= εuν , using the fact that uµ is a

time-like eigenvector of T µν
CYM

and satisfies u2 = 1.

Other important details of our analysis are as follows.
Unless otherwise noted, τswitch = 0.2 fm/c. We employ
the s95p-PCE equation of state, obtained from fits to lat-
tice QCD results and a hadron resonance gas model [29],
with partial chemical equilibrium (PCE) setting in be-
low a temperature TPCE = 150MeV. Kinetic freeze-out
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FIG. 1. (Color online) Gluon multiplicity distribution in the
IP-Glasma model.

occurs at TFO = 120MeV. At this temperature, we im-
plement the Cooper-Frye prescription [30] for computing
particle spectra. Unless otherwise noted, shown results
include decays from resonances of masses up to 1.3GeV.
A novel feature of our study is the determination of

centrality classes using the multiplicity distribution of
gluons much alike the procedure followed by the heavy
ion experiments [31]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, begin-
ning with integrating from the right. As a consequence
of implementing this centrality selection, we properly ac-
count for impact parameter and multiplicity fluctuations.
Because entropy is produced during the viscous hydro-

dynamic evolution, we need to adjust the normalization
of the initial energy density commensurately to describe
the final particle spectra [32]. The obtained pT -spectra
of pions, kaons, and protons are shown for 0-5% central
collisions at

√
s = 2.76TeV/nucleon, using the shear vis-

cosity to entropy density ratio η/s = 0.2, in Fig. 2, and
compared to data from ALICE [33]. The results are for
averages over only 20 events in this case, but statisti-
cal errors are smaller than the line width for the spec-
tra. Overall, the agreement with experimental data is
good. However, soft pions at pT < 300MeV are under-
estimated.
We determine v1 to v5 in every event by first deter-

mining the exact event plane [34][35]

ψn =
1

n
arctan

〈sin(nφ)〉
〈cos(nφ)〉 , (1)

and then computing

vn(pT ) = 〈cos(n(φ − ψn))〉

≡
∫
dφf(p⊥, φ) cos(n(φ− ψn))∫

dφf(p⊥, φ)
, (2)

where f(p⊥, φ) are the thermal distribution functions ob-
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FIG. 2. (Color online) Identified particle transverse momen-
tum spectra including all resonances up to 2GeV compared
to experimental data from the ALICE collaboration [33].
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FIG. 3. (Color online) Root-mean-square anisotropic flow co-

efficients 〈v2n〉
1/2 as a function of transverse momentum, com-

pared to experimental data by the ATLAS collaboration using
the event plane (EP) method [4] (points). 200 events. Bands
indicate statistical errors. Experimental error bars are smaller
than the size of the points.

tained in the Cooper-Frye approach (with additional con-
tributions from resonance decays).

We first present the root-mean-square (rms) vn(pT )
for 10 − 20% central collisions and compare to experi-
mental data from the ATLAS collaboration [4] in Fig. 3.
Agreement for v2-v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [36]. We also find excel-
lent agreement over the whole studied centrality range
when comparing the pT -integrated rms v2, v3 and v4 to
the available vn{2} (obtained from two-particle correla-
tions, corresponding to the rms values) from the ALICE
collaboration [3], as shown in Fig. 4.

We studied the effect of initial transverse flow included
in our framework by also computing vn(pT ) with u

µ set
to zero at time τswitch. The effect on hadron anisotropic
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FIG. 4. (Color online) Root-mean-square anisotropic flow co-

efficients 〈v2n〉
1/2, computed as a function of centrality, com-

pared to experimental data of vn{2}, n ∈ {2, 3, 4}, by the
ALICE collaboration [3] (points). Results are for 200 events
per centrality with bands indicating statistical errors.

flow turns out to be extremely weak - results agree within
statistical errors. Because photons are produced early
on in the collision, we expect a greater effect on photon
anisotropic flow; this will be examined in a subsequent
work. We emphasize that pre-equilibrium dynamics that
is not fully accounted for may still influence the amount
of initial transverse flow.

The effect of changing the switching time from
τswitch = 0.2 fm/c to τswitch = 0.4 fm/c is shown in Fig. 5.
Results agree within statistical errors, but tend to be
slightly lower for the later switching time. The nonlinear
interactions of classical fields become weaker as the sys-
tem expands and therefore Yang-Mills dynamics is less
effective than hydrodynamics in building up flow at late
times. Yet it is reassuring that there is a window in time
where both descriptions produce equivalent results.

Because a constant η/s is at best a rough effective
measure of the evolving shear viscosity to entropy den-
sity ratio, we present results for a parametrized temper-
ature dependent η/s, following [37]. We use the same
parametrization (HH-HQ) as in [37, 38] with a minimum
of (η/s)(T ) = 0.08 at T = 180MeV, approximately at
the cross-over from QGP to hadron gas in the used equa-
tion of state. The result, compared to η/s = 0.2 is shown
for 20 − 30% central collisions in Fig. 6. The results are
indistinguishable when studying just one collision energy.
The insensitivity of our results to two very different func-
tional forms may suggest that the development of flow is
strongly affected at intermediate times when η/s is very
small. Also, since second order viscous hydrodynamics
breaks down when Πµν is comparable to the ideal terms,
our framework may be inadequate for too large values of
η/s.

We compare results for top RHIC energies, obtained
using a constant η/s = 0.12, which is about 40% smaller

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.5  1  1.5  2

〈v
n2 〉1/

2

pT [GeV]

ATLAS 30-40%, EP
narrow: τswitch = 0.4 fm/c
wide: τswitch = 0.2 fm/c

η/s =0.2 

 v2 
 v3 
 v4 
 v5 

FIG. 5. (Color online) Comparison of vn(pT ) using two dif-
ferent switching times τswitch = 0.2 fm/c (wide), and 0.4 fm/c
(narrow). Experimental data by the ATLAS collaboration us-
ing the event-plane (EP) method [4] (points). Bands indicate
statistical errors.
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FIG. 6. (Color online) Comparison of vn(pT ) using con-
stant η/s = 0.2 and a temperature dependent (η/s)(T ) as
parametrized in [37]. Experimental data by the ATLAS col-
laboration using the event-plane (EP) method [4] (points).
Bands indicate statistical errors.

than the value at LHC, to experimental data from STAR
[39] and PHENIX [1] in Fig. 7. The data is well described
given the systematic uncertainties in both the experimen-
tal and theoretical results [40]. A larger effective η/s at
LHC than at RHIC was also found in [41]. The tem-
perature dependent (η/s)(T ) used to describe LHC data
works well for low-pT RHIC data, but underestimates
v2(pT ) and v3(pT ) for pT > 1GeV. The parametrizations
of (η/s)(T ) in the literature are not definitive and signif-
icant improvements are necessary. Our studies suggest
great potential for extracting the temperature dependent
properties of QCD transport coefficients by performing
complementary experiments extracting flow harmonics at
both RHIC and LHC.
In Fig. 8 we present results for v1(pT ) compared to ex-

perimental data from ALICE [42], extracted in [44], and
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FIG. 7. (Color online) Comparison of vn(pT ) at RHIC using
constant η/s = 0.12 and a temperature dependent (η/s)(T ) as
parametrized in [37]. Experimental data by the PHENIX [1]
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-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  0.5  1  1.5  2

v 1

pT [GeV]

20-30% 

 ATLAS
 ALICE
 η/s = 0.2 

FIG. 8. (Color online) v1(pT ) compared to experimental data
from the ALICE [42] and ATLAS [43] collaborations.

from ATLAS [43]. v1(pT ) cannot be positive definite be-
cause momentum conservation requires 〈v1(pT )pT 〉 = 0.
There is a disagreement between the experimental results
(discussed in [43]) and between theory and experiment at
LHC. On the other hand, v1(pT ) at RHIC is very well re-
produced (see Fig. 7). One possible explanation for the
data crossing v1(pT ) = 0 at a lower pT than the calcula-
tion at LHC could be the lower pion pT -spectrum at very
low pT in the calculation – see Fig. 2. However, this is
not necessarily the only explanation. In fact, for RHIC
energies, calculated pion spectra also underestimate the

data for pT < 300MeV but v1(pT ) is well reproduced.
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FIG. 9. (Color online) Scaled distributions of v2, v3, and v4
(from top to bottom) compared to experimental data from
the ATLAS collaboration [36, 45]. 1300 events. Bands are
systematic experimental errors.

We present event-by-event distributions of v2, v3, and
v4 compared to results from the ATLAS collaboration
[36, 45] in Fig. 9. We chose 20-25% central events because
eccentricity distributions from neither MC-Glauber nor
MC-KLNmodels agree with the experimental data in this
bin [36]. To compare data with the distribution of ini-
tial eccentricities [46] from the IP-Glasma model and the
final vn distributions after hydrodynamic evolution, we
scaled the distributions by their respective mean value.
We find that the initial eccentricity distributions are a
good approximation to the distribution of experimental
vn. Only for v4 (and less so for v2) the large vn end of
the experimental distribution is better described by the
hydrodynamic vn distribution than the εn distribution.
This can be explained by non-linear mode coupling be-
coming important for large values of v2 and v4 [47].
In summary, we have shown that the IP-
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Glasma+music model gives very good agreement
to multiplicity and flow distributions at RHIC and LHC.
By including properly sub-nucleon scale color charge
fluctuations and their resulting early time CYM dynam-
ics, this model significantly extends previous studies in
the literature [20, 41, 48–52]. Omitted in all studies
including ours is the stated dynamics of instabilities and
strong scattering in over-occupied classical fields that
can drive the system to isotropy and generate substan-
tial flow well prior to thermalization. Ongoing work
in this direction is promising and can be incorporated
seamlessly in our framework. In addition, there are
uncertainties in the equation of state, and in chemical
and thermal freeze-out assumptions and parameters.
We have not attempted a fine tuning of parameters –
the sensitivity of our results to various parameters will
be addressed in a follow up work. Despite these caveats,
the successful description of a wide range of data in our
model provides a framework to nail down key aspects of
the complex dynamics of heavy ion collisions.
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