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We present a higher dimensional model where gravity is bound to a brane due to Anderson
localization. The extra dimensions are taken to be a disordered crystal of branes, with randomly
distributed tensions of order the fundamental scale. Such geometries bind the graviton and thus
allow for arbitrarily large extra dimensions even when the curvature is small. Thus this model is
quite distinct from that of Randall and Sundrum where localization is a consequence of curvature
effects in the bulk. The hierarchy problem can be solved by having the standard model brane live
a distance away from the brane on which the graviton is localized. The statistical properties of the
system are worked out and it is shown that the scenario leads to a continuum of four dimensional
theories with differing strengths of gravitational interactions. We live on one particular brane whose
gravitational constant is GN .

INTRODUCTION

Allowing for extra dimensions introduces new perspec-
tives on the rich structure of gravity. Kaluza and Klein
(KK) [1] proposed a picture of a low energy universe that
arises from the compactification of a higher dimensional
space-time. In the “standard” KK scenarios, we insure
four dimensional phenomenology by compactifying the
extra dimensions on scales small enough that standard
model (SM) KK modes escape detection due to their
large masses. The most natural size of the extra di-
mensions is the d dimensional Planck scale (M?), which
can lead to strongly coupled gravity, making it difficult
to find explicit ground states, a noted exception being
the Horava-Witten solution [3]. More recently [2] it was
pointed out that the size of the extra dimensions can be
arbitrarily large, if we localize our SM fields onto a D-
brane [4], surfaces on which strings end. Large extra di-
mensional models solve the hierarchy problem by diluting
the strength of gravity. Even if M? ∼ TeV , the correct
value for GN is generated if the size (r0) of the extra di-

mensions obeys G−1
N ∼M

(d−2)
? r

(d−4)
0 . Given that gravity

should look four dimensional down to mm scales [5] the
number of extra dimensions must be at least two in these
models. In addition to the graviton zero mode there are
also light KK modes which, if the curvature of the extra
dimensions are small, have unsuppressed couplings to the
SM brane, leading to deviations from Newton’s law near
the scale of the KK mass.

This scenario does not solve the hierarchy problem un-
til we can understand why the extra dimensions are large
compared to the TeV scale. To generate a large extra di-
mension, one needs some stabilization mechanism. More-
over, to attain a vanishing four dimensional cosmological
constant (Λ4), the brane tension must be balanced by
other curvature sources such as a negative bulk cosmo-
logical constant or the curvature due to the extra dimen-
sions. In standard large extra dimensional models the
potential for the size modulos (r) of the extra dimensions

is

V (r) = f + Λrn − n(n− 1)κMn+2
? rn−2. (1)

Where f is the brane tension, Λ is the bulk cosmological
constant and κ is the curvature of the compact manifold,
which equals zero or one for tori and n-spheres, respec-
tively. Λ4 = V (Rmin) ∼ 0 is obtained by a tuning.

In these models the bulk is flat 1 and the graviton
is delocalized, forcing the space to be compact. Ran-
dall and Sundrum (RS) pointed out [6, 7] that one can
make the extra dimensions arbitrarily large, by utilizing
the curvature to localize the graviton, and suppress the
contributions of the light KK modes. The wave equa-
tion for the zero mode maps to the problem of solving
the Schrödinger equation with a potential with a “vol-
cano” shape which binds the zero mode and repels the
KK modes (see figure (1)). In the limit of an arbitrarily
large extra dimension, there is no gap. We recover a sen-
sible low energy theory of gravity, because the continuum
KK modes overlap with the brane is suppressed.
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FIG. 1. The volcano potential generated in the RS scenario
which has a zero mode bound state and repels the KK modes.

We consider an alternative method of localization that
operates even within flat backgrounds. Linearized grav-

1 The bulk cosmological constant must thus remain small, which
can be accomplished by making the bulk supersymmetric.
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itational fluctuations propagate as waves, just like light,
which can be localized using photonic crystals [8]. It is
natural to ask whether we may utilize such a mechanism
to localize the graviton. In photonics crystals light is
trapped in a geometry where excitations in a given fre-
quency range are excluded because they lie in the band
gap. In the gravitational case, this band gap localization
will not do, since we are interested in localizing a “zero
energy” 2 state at the bottom of a band.

A

B

FIG. 2. The propagation from A to B receives contributions
from multiple paths each of which contributes a random phase
to the probability amplitude. Closed paths on the other hand
all have time reversed paths which have identical phases, lead-
ing to constructive interference and localization.

To achieve localization we utilize a different approach.
Instead of propagating within a uniform crystal we allow
for disorder, which introduces localized states[12]. The
mechanism for localization is illuminated in the prop-
agator where paths which return upon themselves are
enhanced relative to other paths, since they receive con-
structive interference with time reversed paths (see fig.2).
One can apply a similar reasoning to gravity.

We begin by noting that brane-crystals have been uti-
lized to generate large stable extra dimensions [9, 10]. In
this scenario one considers a space with N branes sepa-
rated by an amount of order the fundamental scale M?.
In fact the separation should be slightly larger then this
scale to insure that no light string modes show up in
the effective four dimensional low energy theory. Inter-
brane forces stabilize the crystal. When the graviton is
not localized the extra dimensions must be compact and
thus we cannot stabilize the crystal using charges asso-
ciated with gauge fields due to Gauss’ law. However,
D-brane charges living in a K-theory group carry charges
which are not associated with a gauge symmetry[11]. In
this case the D-branes will experience a Van der Waals
interaction which, in combination with a hard core re-
pulsive interaction, can lead to stable lattices [10] . In
these models Bloch’s theorem implies that all the modes
are completely delocalized, and as such, the space must
be compact. In our model since the graviton will be lo-
calized, the extra dimensions can be non-compact and
standard (non-BPS) D-brane charges can be utilized.

2 Here the term energy is used only to make an analogy with the
quantum mechanics problem.

We now ask whether or not a disordered crystal gen-
erates a sensible low energy theory, and, if so, can it ex-
plain the relative weakness of gravity? In a co-dimension
one disordered crystal all states [13] are localized such
that the wave function behaves as ψ(x) ∼ exp(−x/Lloc),
where Lloc is the localization length. Note that the
Mermin-Wagner-Coleman theorem will not apply in our
case, since the fluctuations of the order parameter de-
pend upon the transverse coordinates. Furthermore, if
the branes are at orbifold fixed points there is no Gold-
stone mode to destabilize long range order.

One might think that such a system is intractable,
however, symmetries and simple robust physical argu-
ments allow us to make quantitative statements. We take
as our action

S = −
∫
d5x
√
G(M3

?R) +
∑
〈ij〉

M4
?V (| Xi −Xj |)

−
∑
i

∫
d4x

√
gindfi, (2)

where fi are a random distribution of brane tensions
which are all assumed to be of order M? and V is the
above mentioned nearest neighbor inter-brane potential.
G is the bulk metric while gind is the induced metric on
the brane. In general one would expect a bulk cosmologi-
cal constant, but the robustness of Anderson localization
is such that it will not affect our analysis at the qualita-
tive level. Furthermore, to emphasize that the localiza-
tion mechanism presented here is a flat space phenomena
we take the bulk curvature to be much smaller then the
fundamental scale. Four dimensional flatness implies we
have one (cosmological constant) fine tuning 3.∑

i

fi +
∑
i,j

M4
?V (| Xi −Xj |) = 0. (3)

| Xi−Xj |∼ a is inter-brane distance of order α/M?, and
α ∼ 10 to avoid strong gravity issues.

In general we will have both “positional” disorder
where Xn − Xn+1 = a + ∆n and “amplitude disor-
der” where fi = f + ηi. ∆n, ηi are random variables
drawn from a distribution. Correlations between posi-
tional and amplitude disorder can lead to anomalously
delocalized states. However, these states reside in the
band centers [15] and would not be relevant in the low
energy effective theory. For non-BPS D-branes there will
be no correlation between these two types of disorder
since the positional disorder is equivalent to a disorder
in the D-brane charge which is independent of its ten-
sion. ηi and ∆i are drawn from a distribution which
we will take to be uncorrelated (i.e. white noise) such

3 In principle some of the f ′s could be negative at orbifold fixed
points.
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that 〈ηnηm〉η2n
= δn,m and 〈∆n∆m〉

∆2
n

= δn,m, where the

brackets denote statistical averaging over distributions
P2(ηn), P2(∆n), respectively. To avoid fine tunings we
will assume f ∼ M?, and 〈ηi〉 = 〈∆n〉 = 0. In princi-
ple we could solve for average values of the inter-brane
metric, but for our purposes this is unnecessary. The
physics is sufficiently robust that we can answer all the
relevant questions without finding the explicit solution to
Einsteins’ equations.

First we consider the ordered (Kronig-Penney like) sys-
tem. The spectrum (see fig. 3), is composed of series of
bands and gaps both of which scale inversely in the lat-
tice spacing a. Bloch’s theorem implies all states are

ka

m(k)

1 /a

FIG. 3. The band structure with vanishing disorder. On the
scale of M? the bands are nearly continuous. The separation
between levels if of order M?/N .

delocalized, thus the extra dimension must be compact
and small enough to generate sufficient mass gap to re-
produce Newton’s law down to the mm scale. In [9, 10]
the authors solved the hierarchy problem by generating
large, but finite, stable extra dimension using N ∼ 1032

crystal sites in six dimension. In this model, along with
any model which retains 4-D Poincare invariance, there
is one zero mode.

When we introduce disorder all the states are localized
(in 5-D) which implies that the size of the extra dimen-
sion no longer controls the strength of gravity. To calcu-
late the localization length we first quantify the amount
of disorder which is determined by the variance (σ) of
P (fi). In our approximation of small tensions we neglect
the curvature generated by the branes, in which case this
model can be described [15] by the discrete tightly-bound
Anderson model whose Hamiltonian is given by

H =
∑
ij

εia
†
iai + tija

†
ia
j+1. (4)

tij is the hopping parameter which is assumed to connect
only nearest neighbors (tight binding) and εi are the on-
site energies, corresponding to the brane tensions. This
model, which represents the motion of electrons on a dis-
ordered delta function potential lattice, will properly 4

4 This model does not allow include positional disorder, the effect
of which will not change qualitative results. See for instance [15].

reproduce our case of interest in the limit when we can
ignore the warping of the space due to the tensions, i.e.
when f/m? � 1. Given that we’re assuming that f is
small enough that were away from strong coupling, this
model should provide a good qualitative description of
spectrum of our theory.

Note that the Anderson model only has one band, but
any upper band in our model would play little to no
role in the low energy effective theory. For our purposes
we take tij ≈ tδij , in which case the system is said
to have “diagonal disorder”. Furthermore, to avoid any
fine-tunings, we will take P (fi) to be uniform with order
one variations such that 〈fi〉 = f . Note that we are as-
sured of one, and only one, zero mode. More than one
massless mode would not lead to a consistent quantum
theory at long distances since there would not be enough
ghosts to cancel off all of the negative norm states. The
diffeomorphism invariance which assures a sensible low
energy effective theory is however, not manifest in the
the Anderson model, which is only an approximation to
our system since we have neglected the curvature induced
by the branes.

On dimensional grounds, we would expect the bound
modes to have masses of order but less then M?. Thus
the spectrum is composed of a zero mode and a gap,
though this is just a probabilistic statement. There is
a probability to find some low lying modes that would
formally reside in the gap. However, we will see below the
density of states in the gap is exponentially suppressed.

We are interested in the “strong disorder” limit where
σ
t � 1. The hopping parameter is given by

t ≡ 〈i | H | i+ 1〉 =

∫ a

0

dz
1

Lloc
e−(2z+a)/Lloc

=
a

2L3
loc

e−3a/Lloc(e2a/Lloc − 1). (5)

In one dimension transfer matrix techniques allow us
to solve for the localization length [14], (Lloc/a)−1 ∼
Log[σa] . Self-consistency follows since

σ

t
=

2a4σ4

(a2σ2 − 1)Log2(aσ)
∼ 2

(aσ)2

Log2(aσ)
∼ α2/Log2(α)� 1.

(6)
In the disordered case the lower band states are local-

ized to branes, while the upper band consists of would be
plane wave modes which are also localized but randomly
dispersed.
GN is fixed by the separation between the brane which

localizes the graviton and the brane upon which the stan-
dard model (SM) fields reside. If the SM lives on a brane
which is p lattice spacings away from the gravitons’ brane
then the effective four dimensional Planck mass will be

Mpl = M?e
ap/Lloc = M?e

p log[α]. (7)

Thus to solve the hierarchy problem assuming M? ∼
TeV , the standard model should live approximately 30
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FIG. 4. The density of states in the strong disorder limit.
The width of the flat part of the band is of order f . At the
edges the density of states n(m) dies off exponentially fast
and vanishes at the origin.

lattice spacings away from the brane on which the zero
mode graviton is localized. If the size of the extra di-
mension is larger then a mm, we have to be sure that
the light KK modes near the band edge do not generate
deviations from Newton’s law. In the non-compact limit
the gravitational potential is

V4(r) + VKK
m1m2

=
GN
r

+
GN
r

∫ ∞
0

dme−mrn(m)
ψ2
m(0)

ψ2
0(0)

(8)
where n(m) is the density of states per unit mass, and
ψm(0) is the wave function of the mass m KK mode on
the SM brane. The general form of the Anderson model
density of states in the strong disorder limit is shown in
figure (4) [16]. The density of states is essentially uniform
in the region where there masses are of order of the brane
tensions. It is clear that the contribution from the KK
modes can be expected to be negligible given that the
probability of a very light mode living on a brane suffi-
ciently close to ours that it would have a non-negligible
overlap is exponentially small. This is particularly true
given that the size of the extra dimension can be arbi-
trarily large.

We hope to have conveyed here is that there is yet an-
other alternative to compactification beyond the work of
(RS) in which localized gravity can be achieved even in
the weak field limit, i.e. where one can expand around a
nearly flat space. The physics of the localization is as a
consequence of the interference phenomena which arises
due to disorder. The inclusion of curvature is not ex-
pected to change the physics as the physical reasoning
behind the localization remains the same. Though find-
ing a strongly curved crystal like solutions to the Einstein
Equations would be formidable. What is required for the
localization is one, or more, extra dimension populated
by defects. As in the RS models, localization allows for
arbitrarily large extra dimensions, as opposed to the large
extra dimensions scenario [2], as the gap is not controlled

by the size modulos. The possible difficulties in achiev-
ing a disordered extra dimension have not been discussed
here and deserve further attention. Also, there are many
open phenomenological questions which need to be ad-
dressed.
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