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Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much
longer wavelength (superhorizon even), leaving as signature a large-angle modulation of the observed
CMB power spectrum. This provides an alternative origin for a power asymmetry which is otherwise
often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be
significant even for typical ~ 107° perturbations, while respecting current constraints on non-
Gaussianity, if the squeezed limit of the bispectrum is sufficiently infrared-divergent. Just such a
strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-

Davies initial state, for instance.

Upper limits on the observed CMB power asymmetry place

stringent constraints on the duration of inflation in such models.

Large-scale features in the cosmic microwave back-
ground (CMB) offer interesting avenues for testing phe-
nomena that occurred at very early times in the Uni-
verse’s history. While most inflationary models pre-
dict approximately scale-invariant, Gaussian fluctua-
tions, some amount of non-Gaussianity is invariably gen-
erated [1]. In this paper, we show that even for an almost
scale-independent power spectrum of curvature perturba-
tions (i.e. ~ 1075 in amplitude on all scales), primordial
non-Gaussianity can lead to interesting, significant effects
on the CMB, in particular a large angular scale modula-
tion of the small scale power spectrum. This is achieved
without violating stringent observational bounds on non-
Gaussianity in the sub-horizon perturbations.

There are some observational indications for a dipolar
modulation of the CMB power spectrum [2—4]. Such an
anisotropic CMB sky can be described by [5]

O(h) = [1+ f(0)]O(R), (1)

where é(ﬁ) is the observed, anisotropic temperature fluc-
tuation §7'/T, while O(11) is a statistically isotropic tem-
perature field, and f(#1) is the modulating function. Note
that while ©(11) is statistically isotropic and is thus (sta-
tistically) invariant under a rotation of the coordinate
system, f(fi) depends on fixed directions on the sky.
The lowest order modulation is a dipole, as any
monopole of f(f1) is absorbed in the angle-averaged CMB
power spectrum. The most recent analysis of [2] obtain
a statistically significant dipolar asymmetry, while the
WMAP team do not confirm this finding [6]. Hanson
et al. [7] find that beam asymmetries provide an expla-
nation for the non-zero quadrupolar asymmetry. Several
scenarios have been proposed in the literature to explain
possible power asymmetries: [8, 9] considered remnants
from the pre-inflationary phase, [10-12] proposed a sin-
gle large-scale curvature perturbation, while [13] studied
a spacelike vector field. These scenarios either involve a
change in the inflation field Ap ~ A across the present
horizon, many orders of magnitude larger than expected
from the amplitude of fluctuations, or a breaking of the

symmetries of the background.
Alternatively, one can interpret a large-scale modu-
lation of the CMB temperature fluctuations as due to
a non-Gaussian coupling between long and short wave-
modes [14, 15]. The power spectrum of the Bardeen po-
tential ¢ on short scales is modulated by the presence of
long modes if the fluctuations are non-Gaussian. We can
Taylor expand the power spectrum of short modes (k) in
the presence of long modes (k; < k) [1]:
3k
P = o) |1+ [ o)
By(lk +ke/2|,| —k+ke/2[, | — ke])

Gk, ko) = Py (ko) Py (k)

(2)

where P(;“Od(k) is the modulated power spectrum, and
By is the bispectrum [33]. G(k,k¢) can be understood
as a scale- and orientation-dependent generalization of
the dimensionless nonlinearity parameter fyi,.

The scenario we are considering is not statistically
anisotropic in any fundamental sense; rather, the ob-
served power spectrum Pgmd (k) depends on the direction
of k because the long modes in our particular realization
of the Universe statistically pick out certain directions
k¢, and non-Gaussianity couples these long modes to the
observable ones. Also, this effect doesn’t require having
a large amplitude long wave-mode ¢(ky); a large kernel
G in the squeezed limit is sufficient.

Observational bounds on primordial non-Gaussianity
are rather tight [16], which might lead one to expect the
proposed effect must be small. The key point is that
current observational constraints come from modes where
both k, and k are within our horizon. This is however
not necessary for Eq. (2) to apply, allowing even super-
horizon modes k, which we cannot directly measure to
have an impact on observable modes k in the form of an
anisotropic modulation. Two conditions should be met
for this effect to be interesting: 1. the kernel G should be
anisotropic, i.e. a non-trivial function of k- f{(; 2. (G has
to grow in the squeezed limit, i.e. scale like k/k; to some
positive power. Existing constraints effectively bound G



only for moderate ratios of k/ky, while the super-horizon
modulation effect is sensitive to larger ratios. We will
interpret claims of power asymmetries in the literature
as upper limits, and use them to constrain models with
such a strong coupling between short and long modes.

Power asymmetry: The fluctuations of a statistically
isotropic Gaussian field ©(f1) are specified through the
spherical harmonic coefficients, (©;,,07,..,) = 01/ 6 Ci.
Adopting the notation of [17], the Oy, are related to the
Bardeen potential perturbations ¢(k) via

3 -~
O = dr / %(—i)%(k)m(km(k), 3)

where A;(k) is the photon temperature transfer function.
The power spectrum of the Gaussian temperature fluc-
tuations is then given by,
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On the other hand, the spherical harmonic coefficients of
the modulated field © [Eq. (1)] are

Otm — Oy = Z @l/m’fLM/dQQ Y Yo Yim,
LM m!

where we have expressed f(ii) in terms of its multipole
moments (with respect to a fixed coordinate system).
The integral over three spherical harmonics can be writ-
ten in terms of Wigner 3-j symbols, leading at linear
order in fr to

(OO ) = 6O Cr+ Y s G as [C + C]
LM
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The 3-j7 symbols entail that [4+1'+L even, m’—m+M = 0,
and that |l — 1’| < L <1+ 1'. The latter condition is
particularly relevant since we are interested in the case
where L = 1. Eq. (5) gives the covariance matrix of
© in multipole space in terms of the (fixed) multipole
moments fry and the statistics of ©. As expected, the
covariance is not diagonal, but it is very close to diagonal
for I,I' > L, i.e. it is non-zero only if |l — I'| < L.

Non-Gaussianity: We assume that there is some gen-
eral non-Gaussianity described to leading order by a
bispectrum Bg. We are interested in the limit ky <
Hy < k, where Hy is the Hubble scale today. Following
Eq. (2), we expect that the presence of long-wavelength
modes together with the mode-coupling induced by non-
Gaussianity lead to a breaking of statistical isotropy
through the preferred direction ky. Consequently, we now
calculate the covariance of the temperature field given

()

Eq. (2). Multiplying Eq. (3), with ©;,,,/, and integrating
over one of the momenta leads to

<®lm®?’m/> ~ 6ll’ (5mm/ Cl
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where we set |k — ky| ~ k in the squeezed-limit approxi-
mation (corrections scale as k¢/k and higher). We obtain

<®lm@7/m'> = 5ll’6mm’ C’l

kz?dk’f L
+ 2n)? G i miCuv (k)b (Ke), (7)
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where we have defined

Cuulhe) = [ Kk (i) A7 () + A7 (k) Ao (1)
X P¢(k)GL(]€, k‘g)

Gk ko) = Y Gr(k, ke)Yia (ko) Yo (B), (8)
LM
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using the fact that the kernel G only depends on the
angle between k and ky. Comparing with Eq. (4), we
see that Cj(ke) is equal to the temperature power spec-
trum obtained when replacing Py (k) — Gr(k, ke)Py(k),
i.e. with a different initial power spectrum of curvature
fluctuations. Thus, apart from the fact that the non-
Gaussian covariance involves Cj, instead of C; + Cyyr,
it is identical in structure to the covariance obtained for
the anisotropic field Eq. (5) [34]. The fractional differ-
ence between C; and Cy, Cpyp is of order L/l < 1. We
will thus approximate Cyr in Eq. (7) with (C;; + Cpyr) /2.

We conclude that if G (k, k¢) is significant in the limit
k¢/k — 0 for some L > 0, the temperature fluctuations
of the CMB appear as if they experience a (large-angle)
modulation of multipole order L. In particular, this ne-
cessitates an anisotropic coupling of long- and short-
wavelength modes. We now calculate the amplitude of
this modulation. For scale-free bispectrum shapes, the
kernel moments in the squeezed limit (k; < k) can be
written as

Gr(k,ke) = g1 (?:)% ) (10)

where gr, is a constant and aj gives the scaling in the
squeezed limit. We also define the temperature power
spectrum with a tilted spectral index ns — ngs + «,

™
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where kg = 0.05 Mpc~! is the pivot scale used to normal-
ize Py(k). By comparing Eq. (7) with Eq. (5), we can



then read off the relation between the long-wavelength
perturbations and the anisotropy coefficients fr s, for a
given [ considered:

fom = %/%QSLM(]W)QL (Z:;) ’ CZC(,;S)L)- (12)

The multipole coefficients which give the amplitude and
direction of the modulation are thus related to the given
realization of the large-wavelength modes ¢(k;). The
last factor in Eq. (12) encodes the fact that in general
this modulation is I-dependent; i.e. one is effectively
adding a tilted CMB power spectrum Cj(—ay,) with an-
gular modulation to the angle-averaged CMB power spec-
trum. While we cannot predict the direction of the power
modulation, we can calculate the expectation value of the
amplitude, defined as A = (Zb:_L |foar|?)'/2. Since
the fras are proportional to ¢(k¢), they are Gaussian-
distributed complex numbers with mean zero. The am-
plitude A thus follows a x distribution for 2L + 1 degrees
of freedom, with an expectation value of

1/2
Cgr (LN24L | pRemsg2 g, ko) 2%
W= 2= | oo (32)
Cl(—OéL)
X 7@(0) (13)
where we have used
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kQ

If o is sufficiently negative, (A) diverges as we let the
lower integration bound go to zero. Such a prediction
for A can be ruled out to high significance by the data
if the observational limit Ay, < (A4). In general, if
Py(ke) oc kj*~*, then ar, < (1 —ny)/2 for some L > 0 in
Eq. (10) is necessary for a significant large-scale asymme-
try of the CMB. Fig. 1 shows quantitative results for the
expected asymmetry (A) with L = 1, as function of CMB
multipole . We adopt the ansatz Eq. (10) with g1 = 1,
and integrate from k¢ min t0 ke, max = 1/Mss, where i is
the comoving distance to the last scattering surface (the
latter choice is unimportant numerically). We choose
three different sets of (o1, k¢ min) and use CAMB [18] for
the computation of Cj(«). Clearly, a significant ampli-
tude of power asymmetry can be achieved with a range
of parameters. The closer « is to zero, the smaller k¢ min
needs to be to generate a given amount of asymmetry
(at fixed g1). On the other hand, a more negative
leads to a stronger scale-dependence: the amplitude of
the modulation approximately scales as [~*1.
Inflationary bispectra which consist of symmetrized
polynomials in the three momenta kq, ko, k3 do not lead
to a power asymmetry since the coupling of modes is
isotropic (G = 0 for L > 0). However, these simple
bispectra are often only obtained as separable approxi-
mations to the more complicated exact bispectra, which
may themselves in fact lead to G # 0. Hence, it is
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FIG. 1: Expected amplitude (A) of a dipole modulation (L =
1) as function of CMB multipole [, for three sets of values for
(a1, ke,min) as indicated in the figure. We have used Eq. (10)
with g1 = 1. Predictions for different L can be obtained by
multiplying with gr (L!)24% /2(2L)!.

crucial to consider the full, exact bispectrum when de-
termining whether a given inflationary model leads to a
power asymmetry. It is clear however that such a power
asymmetry requires a violation of the standard consis-
tency relation [1], at least on the scales of interest, as it
contains no anisotropic coupling between long and short
modes. A recent example is solid inflation [19], which
predicts a quadrupolar coupling between long and short
modes. But since in this model G does not grow in the
squeezed limit, the resulting quadrupolar modulation of
the power spectrum is small.

An example of a model that does produce a large-scale
power modulation is the ekpyrotic (“case II”) scenario
of [20], which generates non-Gaussianities that in the
squeezed limit lead to a; = —1 — € and as = —e, where
€ > 0 is a red tilt. Thus, in this model one has diver-
gent dipole and quadrupole modulations. Another case
which has attracted recent interest is modifications to
the initial state (non-Bunch-Davies) in single-field slow-
roll inflation. These can lead to non-Gaussianity with
a1 = —1 [21-27]. The squeezed bispectrum in the simple
non-Bunch-Davies state considered in [26] reads

k
By(lk +ke/2|, | —k+k¢/2],| = ke|) = 3P¢(ke)P¢(k)E

~ 1= ei(1+ﬂ)kl/k* ~1— ei(l_ﬂ)kl/k*

xRe | f1 T+ + fa -

(14)

where Re(f + f2)/2 ~ N, and Ny, is the occupation
number of the momentum state k [35] , u = —k - ky,
kv ~ 1/|mn| is related to the conformal time at which
the initial state is specified, and k, > k. in order for
this result to apply. B is a dimensionless constant equal
to 4e in the case studied in [26, 27], although it could



take larger values in more general models. The kernel
Gy, scales as k/k; in this model, with g, o N for L
even and oy = —1. For L odd, the modulation scales as
f1— f2 which is suppressed by k¢/k. We use observational
upper limits on the (primordial) quadrupole modulation
amplitude A < 0.1 [7] to place constraints on k¢ min = kx.
Numerical evaluation of Egs. (13)—(14) leads to a 95%
C.L. lower limit of [36]

k. >2x10"°h Mpc ' N. B, (15)

implying no more than ~ 3 e-folds of inflation beyond
our current horizon, for NpB ~ 1. This complements the
bound on a non-Bunch-Davies initial state from backre-
action arguments, which is sensitive to N but not B.

Conclusions: Large-scale modulations of the CMB
temperature fluctuations offer an interesting testing
ground for the physics of the very early Universe.
We have shown that certain types of primordial non-
Gaussianity generically predict large power asymme-
tries in the CMB. The requisite non-Gaussianity can be
thought of as an anisotropic, scale-dependent fyr, which
grows in the squeezed limit.

Upper limits on such a modulation can put strin-
gent constraints on this class of models, which includes
scenarios with a non-Bunch-Davies initial state. One
can roughly estimate the modulation amplitude from
the dimensionless bispectrum amplitude G(k,ky) for the
longest observable mode ky ~ H(;l through

(A) ~ G (k,kg=Hy') 4 x 1077 <H0> o , (16)

¢, min

where k¢ min refers to the longest superhorizon mode re-
sponsible for the modulation, and «aj, controls how fast
G grows in the squeezed limit (Eq. 10). Conversely,
observational hints of a power asymmetry provide mo-
tivation to further investigate such models. A convinc-
ing detection of a CMB power asymmetry, if interpreted
in terms of this scenario, would open an observational
window to scales much larger than the present horizon
(k¢ < 1/mss), which are otherwise completely inacces-
sible to direct observation. This fact distinguishes this
effect from a modulation of the temperature power spec-
trum by a horizon-scale mode.

We have shown that the power asymmetries are gener-
ally scale-dependent and increase towards smaller scales.
Thus, unless one invokes a change in the shape or am-
plitude of non-Gaussianity on smaller scales, a non-
detection of a similar power asymmetry in the large-scale
structure [28, 29] puts further stringent constraints on
models that produce such asymmetries. Furthermore,
models with bispectra that peak more strongly in the
squeezed limit than the local model will in fact generate
a scale-dependent bias in large scale structure tracers [30—
32] Ab x k™™ with n > 2 [26, 27]. Observations of the
large-scale structure will thus be of great importance in
strengthening constraints on the possible non-Gaussian
origins of a power asymmetry.

Acknowledgments: We thank Raphael Flauger, Justin
Khoury, Alberto Nicolis and Albert Stebbins for use-
ful discussions. FS was supported by the Moore Foun-
dation at Caltech, and the NASA Einstein Fellowship
program at Princeton. LH is supported by the DOE
and NASA under cooperative agreements DE-FG02-92-
ER40699 and NNX10AN14G.

[1] J. Maldacena, JHEP 5, 13 (2003).
[2] J. Hoftuft et al., Astrophys. J. 699, 985 (2009).
3] F. Paci et al., MNRAS 407, 399 (2010), 1002.4745.

[4] H. K. Eriksen et al., Astrophys. J. Lett. 660, L81 (2007).
[5] C. Gordon, W. Hu, D. Huterer, and T. Crawford, Phys.
Rev. D 72, 103002 (2005), arXiv:astro-ph/0509301.

[6] C. L. Bennett et al., Astrophys. J. Suppl. 192, 17 (2011).
[7] D. Hanson, A. Lewis, and A. Challinor, Phys. Rev. D

81, 103003 (2010), 1003.0198.
[8] C. R. Contaldi, M. Peloso, L. Kofman, and A. Linde,
JCAP 7, 2 (2003), arXiv:astro-ph/0303636.
[9] J. F. Donoghue, K. Dutta, and A. Ross, Phys. Rev. D
80, 023526 (2009), arXiv:astro-ph/0703455.
[10] A. L. Erickcek, M. Kamionkowski, and S. M. Carroll,
Phys. Rev. D 78, 123520 (2008), 0806.0377.
[11] A. L. Erickcek, S. M. Carroll, and M. Kamionkowski,
Phys. Rev. D 78, 083012 (2008), 0808.1570.
[12] M. Libanov and V. Rubakov, JCAP 1011, 045 (2010).
[13] L. Ackerman, S. M. Carroll, and M. B. Wise, Phys. Rev.
D 75, 083502 (2007), arXiv:astro-ph/0701357.
[14] S. Prunet et al., Phys. Rev. D 71, 083508 (2005).
[15] A. Lewis, JCAP 10, 026 (2011), 1107.5431.
[16] K. M. Smith, L. Senatore, and M. Zaldarriaga, JCAP 9,
6 (2009), 0901.2572.
[17] L. Wang and M. Kamionkowski, Phys. Rev. D 61,

063504 (2000), arXiv:astro-ph/9907431.

[18] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J.
538, 473 (2000), astro-ph/9911177.

[19] S. Endlich, A. Nicolis, and J. Wang (2012), 1210.0569.

[20] J. Khoury and F. Piazza, JCAP 7, 26 (2009), 0811.3633.

[21] X. Chen et al., JCAP 1, 002 (2007).

[22] R. Holman and A. J. Tolley, JCAP 5, 1 (2008).

[23] P. D. Meerburg, J. P. van der Schaar, and P. Stefano
Corasaniti, JCAP 5, 018 (2009).

[24] J. Ganc, Phys. Rev. D 84, 063514 (2011), 1104.0244.

[25] 1. Agullo and L. Parker, Phys.Rev. D83, 063526 (2011).

[26] 1. Agullo and S. Shandera (2012), 1204.4409.

[27] J. Ganc and E. Komatsu (2012), 1204.4241.

[28] C. M. Hirata, JCAP 9, 11 (2009), 0907.0703.

[29] A. R. Pullen and C. M. Hirata, JCAP 5, 27 (2010).

[30] N. Dalal, O. Doré, D. Huterer, and A. Shirokov, Phys.
Rev. D 77, 123514 (2008), 0710.4560.

[31] F. Schmidt and M. Kamionkowski, Phys. Rev. D 82,
103002 (2010), 1008.0638.

[32] R. Scoccimarro, L. Hui, M. Manera, and K. C. Chan,
Phys.Rev. D85, 083002 (2012), 1108.5512.

[33] One can also derive the same by writing the non-Gaussian
field as a convolution of Gaussian fields. See e.g. [31, 32].

[34] In Eq. (5), we have assumed a Gaussian covariance for the
projected quantity ©, while in Eq. (7) we are projecting



a non-Gaussian field, leading to this minor difference. conservatively choose | = 500 here. We evaluate P[A <
[35] This identification ignores interference terms. See [26]. 0.1] > 0.05 using the x distribution.
[36] While [7] constrain the asymmetry up to ! = 1000, we



