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The unique optoelectronic properties of graphene make this two-dimensional (2D) material an
ideal platform for fundamental studies of cavity quantum electrodynamics (QED) in the strong-
coupling regime. The celebrated Dicke model of cavity QED can be approximately realized in this
material when the cyclotron transition of its 2D massless Dirac fermion carriers is nearly resonant
with a cavity photon mode. We develop the theory of strong matter-photon coupling in this cir-
cumstance, emphasizing the essential role of a dynamically generated matter energy term that is
quadratic in the photon field and absent in graphene’s low-energy Dirac model.

PACS numbers: 42.50.Pq,73.43.-f,78.67.Wj

Introduction—Graphene, a 2D honeycomb crystal of Car-
bon atoms [1], is emerging as an ideal platform to study
light-matter interactions for both fundamental and ap-
plied purposes [2–5]. Recent experimental advances have
made it possible to monolithically integrate graphene
with optical microcavities [6, 7], paving the way for cav-
ity QED [8] at the nanometer scale with graphene as an
active medium. Graphene cavity QED offers a plethora
of unique advantages. First, graphene is a highly-tunable
active medium [6] since its electrical and heat transport
properties can be easily controlled by employing gates.
Second, graphene offers many pathways to achieve the so-
called strong-coupling regime of cavity QED [8]. These
include [4, 5] the exploitation of intrinsic Dirac plasmons
or the combination of graphene with other plasmonic
nanostructures. Finally, the active medium can be en-
riched by embedding inside planar cavities 2D vertical
heterostructures [9] comprising graphene as well as other
2D crystals [10] such as MoS2, h-BN, etc.

A central role in cavity QED is played by the Dicke
model [11], which describes a non-dissipative closed
system of identical two-level subsystems interacting
with a single-mode radiation field. For a sufficiently
strong light-matter coupling constant, the thermody-
namic limit of the Dicke model exhibits a second-order
quantum phase transition to a super-radiant ground state
(SPT) [12] with macroscopic photon occupation and co-
herent atomic polarization. Wide interest in these SPTs
has emerged recently in the context of circuit QED [13–
16] and ultracold atom gases in optical cavities [17, 18].
When an external magnetic field is applied to a 2D elec-
tron system, transitions between states in full and empty
Landau levels (LLs) are dispersionless, mimicking atomic
transitions and enabling a condensed matter realization
of the Dicke model. In particular, recent pioneering
work [19, 20] has shown that these systems can be driven
toward the ultrastrong coupling [21] limit by tuning the
cyclotron transition energy of an ordinary parabolic-band
2D electron gas to resonance with the photonic modes of
a terahertz metamaterial. The main scope of this work is

to lay down a theory of the Dicke model of graphene cav-
ity QED. This is not only a fundamental building block
of cavity QED but it also offers a number of intriguing
twists when it is realized on a graphene platform.

The light-matter interaction in the Dicke Hamiltonian
is linear in the vector potential Aem of the cavity. For
condensed matter states described by parabolic band
models, a quadratic A2

em term whose strength is related
to the system’s Drude weight [22] and f-sum rule [23],
also emerges naturally from minimal coupling. It has
long been understood [24] that the Dicke model’s SPT
is suppressed when the quadratic terms are retained.
Demonstrations of this property are often referred to as
no-go theorems. (Standard no-go theorems do not ap-
ply [25] to ultracold atoms which are driven by an exter-
nal pump field and subject to significant cavity losses.)
Electronic states near the neutrality point of a graphene
sheet are described at low energies by a 2D massless Dirac
fermion (MDF) Hamiltonian [1], which is linear in mo-
mentum p. One of the twists offered by the Dicke model
of graphene cavity QED is therefore the following [26]:
minimal coupling applied to the MDF Hamiltonian does
not generate a term proportional to A2

em. Cyclotron res-
onance in this material, which has been extensively in-
vestigated experimentally and theoretically over the past
decade [27], seems therefore to provide an example of an
active medium which could enable a SPT [26] when the
graphene sheet is embedded in a cavity. In this work we
demonstrate however that in the strong coupling regime
the Dicke model for graphene cavity cyclotron resonance
must be supplemented by a quadratic term that is dy-
namically generated by inter-band transitions and again
implies a no-go theorem.

Gauge invariance and SPTs—We consider an electronic
system in D spatial dimensions coupled to an electro-
magnetic (e.m.) field with a single privileged mode de-
scribed by a vector potential A(r, t). We argue below
that the no-go theorem for the SPT requires only unbro-
ken gauge symmetry. Our ideas are most clearly spelled
out when A is treated classically. Quantization of the
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e.m. field can be easily carried out in the final step.
Light-matter interactions are described by minimal cou-
pling: pi → pi + eA(ri, t)/c, where pi is the canonical
momentum of the i-th electron and −e is the electron
charge. The Hamiltonian of a light-matter system can
always be written as Ĥ[A] = Ĥmat[A] +Hem[A], where
Ĥmat[A] contains all the electronic degrees of freedom
treated quantum mechanically, while Hem[A] is the clas-
sical energy density of the e.m. field. The spontaneous
coherent photon state is the ground state when the to-
tal energy is lowered by introducing a finite static vector
potential. Since Hem[A] is a positive-definite quadratic
form of A, the instability can occur only if the second
derivative of the matter energy with respect to A is neg-
ative for static A.

We therefore consider the variation of the matter en-
ergy ∆Emat ≡ Emat[δA]−Emat[0] due to an infinitesimal
variation of the static vector potential:

∆Emat =

∫
dDr δA ·

〈
δĤmat[A]/δA

〉
. (1)

The quantity δĤmat[A]/δA is [28] the physical current

operator, Ĵphys(r). It is convenient to split the current
into paramagnetic and diamagnetic contributions, which
can be defined by the expansion of Ĵphys(r) in powers
of δA. For the µ-th Cartesian component of the current
operator this expansion reads

Ĵ
(µ)
phys(r) = Ĵ (µ)

p (r) +
e

c

∫
dDr′K̂µν(r, r′)δAν(r′) , (2)

where Ĵ
(µ)
p (r) = δĤmat[A]/δAµ(r)|A=0 is the para-

magnetic current-density operator, K̂µν(r, r′) =
(c/e)δ2Ĥmat[A]/δAµ(r)δAν(r′)|A=0, and the sum over
repeated Greek indices is intended. The second term on
the r.h.s. of Eq. (2) is the diamagnetic contribution to
the current-density operator.

We now evaluate the expectation value of Ĵ
(µ)
phys(r) to

first order in δA: i) the expectation value of the para-
magnetic current-density operator, Jµp (r), can be cal-
culated using linear response theory [22, 23]: we find
Jµp (r) = V −1

∑
q J

µ
p (q)eiq·r + c.c. with V = LD the

D-dimensional volume and Jµp (q) = (e/c)χµν(q)δAν(q),
where the tensor χµν(q) is the static paramagnetic
current-current response function. This current corre-
sponds to the linear term in energy that is retained
in the Dicke model. The diamagnetic current operator
in Eq. (2) corresponds to the quadratic term neglected
in the Dicke model. It already contains one power of
δA. Its contribution to the linear response current can
therefore be obtained by evaluating its expectation value,
Kµν(|r − r′|) ≡ 〈K̂µν(r, r′)〉, where 〈. . . 〉 refers now
to the ground state of Ĥmat at δA = 0 (see Sect. I in
Ref. [29]).

Using these results, we find that 〈Ĵ (µ)
phys(r)〉 =

(e/c)V −1
∑

q Ξµν(q)δAν(q)eiq·r +c.c., where we have in-
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M
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FIG. 1: (color online) Left panel: Dipole allowed transitions
in a neutral graphene sheet in the presence of an external mag-
netic field. The horizontal lines denote the unevenly-spaced
Landau levels of massless Dirac fermions. The filled valence
band levels (λ = −1) and the empty conduction band lev-
els (λ = +1) are indicated by filled (empty) circles. The
zero-energy (n = 0) Landau level is formed partly from the
valence band and partly from the conduction band and is half
filled in a neutral system. Right panel: In a doped graphene
sheet with a Fermi level εF placed between the conduction
band n = M and the n = M + 1 Landau levels, there is an
allowed cyclotron transition within the conduction band (ma-
genta line) while some of the lower energy inter-band tran-
sitions, indicated by dashed lines, are Pauli-blocked. There
is a clear energetic separation between the lowest energy (un-
blocked) intra-band transition and the (unblocked) inter-band
transitions.

troduced Ξµν(q) ≡ χµν(q) + Kµν(q), Kµν(q) being the
Fourier transform of Kµν(|r − r′|). The corresponding
change in matter energy up to second order in δA is
∆Emat ∝ V −1

∑
q Ξµν(q)δAµ(q)δAν(−q). The key point

now is to realize [22, 23] that, if gauge invariance is un-
broken, there cannot be a current response to a static
uniform potential (see Sect. II in Ref. [29]). The dia-
magnetic contribution to the current-current response is
crucial to cancel the paramagnetic contribution and can
never be neglected:

lim
q→0

Kµν(q) = − lim
q→0

χµν(q) . (3)

This implies that, in the absence of broken gauge invari-
ance, the change in matter energy due to a static and
quasi-homogeneous vector potential must vanish (for ex-
plicit examples see Sect. III in Ref. [29]). SPTs therefore
cannot occur unless gauge invariance is broken, as it hap-
pens for superconductors.
Cavity cyclotron resonance in graphene—We now focus
on a 2D electron gas in a graphene sheet exposed to a
strong quantizing magnetic field B = Bẑ [30]. When
Zeeman coupling is neglected, the LLs of graphene have
two-fold spin and valley degeneracies and therefore over-
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all degeneracy Nf = 4 [27]. The single-spin single-
valley MDF Hamiltonian reads H0 = vDσ ·Π(r), where
vD ≈ 106 m/s is the Dirac velocity, σ = (σx, σy) is a
2D vector of Pauli matrices, Π(r) = −i~∇r + eA0(r)/c
is the gauge-invariant dynamical momentum, and A0(r)
is the static vector potential that describes the quan-
tizing magnetic field. We work in the Landau gauge
A0(r) = (−By, 0, 0). A complete set of eigenfunctions
is provided by the two-component pseudospinors [27]

〈r|λ, n, k〉 =

(
ψ

(A)
λ,n,k(r)

ψ
(B)
λ,n,k(r)

)
=
eikx√
L

(
C−n ϕn−1,k(y)

λC+
n ϕn,k(y)

)
,

(4)
where λ = +1 (−1) for conduction (valence) band levels,
n ∈ N is the intra-band LL index, and k is the eigen-
value of the magnetic translation operator in the x̂ direc-
tion. In Eq. (4) C±n =

√
(1± δn,0)/2 and ϕn,k(y) are the

normalized eigenfunctions of the parabolic-band Landau
problem [23]. The form of the coefficients C±n guarantees
that the pseudospinor corresponding to the n = 0 LL has
weight only on one sublattice. Each LL has a degener-
acy N = NfS/(2π`

2
B), where S = L2 is the sample area.

The pseudospinor (4) is an eigenstate of the Hamiltonian

H0 with eigenvalue [27] ε
(0)
λ,n = λ~ωc

√
n, where we have

introduced the MDF cyclotron frequency ωc = vD

√
2/`B

and the magnetic length `B = [~c/(eB)]1/2.

The Hamiltonian which describes coupling between
MDFs and light in the cavity does not contain a quadratic
term: Hint = vD(e/c)σ · Aem(r). For future purposes
we introduce the notations σ± = (σx ± iσy)/2 and
A±em(r) = Axem(r) ± iAyem(r). In what follows we ne-
glect [26] the spatial variation of the e.m. field in the
cavity, A±em(r) → A±em, since the photon wavelength is
normally much larger than other length scales in the
problem. In this quasi-uniform approximation we can
easily evaluate the matrix elements of Hint between the
unperturbed pseudospinors (4):

〈λ′, n′, k′|Hint|λ, n, k〉 =
evD

c
δk,k′

(
λC−n′C

+
n δn′,n+1A

−
em

+ λ′C+
n′C

−
n δn′,n−1A

+
em

)
. (5)

The strong coupling limit is most easily obtained when
the Fermi energy εF lies within one of the bands; we con-
sider the case in which it lies in the conduction band (λ =
+1) between the LL with index n = M , which is fully oc-
cupied, and the LL with index n = M+1, which is at least
partially empty. (See Fig. 1.) The Dicke model of cavity
cyclotron resonance includes only the intra-band n = M
to n = M+1 transition and acts in the 2N -fold subspace
spanned by {|+,M, k〉, |+,M + 1, k〉, k = 1 . . .N}, ne-
glecting inter-band transitions [26]. Using Eq. (5) and in-
troducing a set of Pauli matrices {11k, τzk , τ

±
k , k = 1 . . .N}

which act in this two-level-system subspace leads to the

following pseudospin Hamiltonian:

Heff =

N∑
k=1

(
EM11k −

ΩM
2
τzk + εemτ

+
k + ε∗emτ

−
k

)
, (6)

where EM = ~ωc(
√
M +

√
M + 1)/2, ΩM =

~ωc(
√
M + 1 −

√
M), and εem = evDA

−
em/(2c). In this

model the occupied conduction-band LL shifts down in
energy by

∆E
(intra)
M = −N

(evD

2c

)2 A2
em

~ωc
(
√
M + 1 +

√
M) (7)

in the limit of a static vector potential, in violation of
gauge invariance as explained in the previous section.
This is the origin of the SPT found in Ref. [26]. The
correct effective matter Hamiltonian Hmat for graphene
cavity cyclotron resonance must repair this defect.

The Dicke model misses a diamagnetic contribution to
Hmat, which, according to (3), must precisely cancel the
spurious energy shift (7). To derive this term we first
recognize the intrinsic two-band nature of graphene (see
Fig. 1). A generic valence band state |−, n, k〉 is cou-
pled by the e.m. field to two states in conduction band:
|+, n + 1, k〉 and |+, n − 1, k〉. We first consider the un-
doped limit in which all valence band states |−, n, k〉 are
occupied. Because the Dirac model applies over a large
but finite energy region we must apply a cut-off by occu-
pying valence band levels with 0 ≤ n ≤ νmax. Treating
the e.m. field again by second-order perturbation the-
ory, we find the following change in matter energy for an
undoped graphene sheet in a quantizing magnetic field:

∆Eundoped =

N∑
k=1

νmax∑
n=0

[
pn
|〈+, n+ 1, k|Hint|−, n, k〉|2

ε
(0)
−,n − ε

(0)
+,n+1

+ pn−1
|〈+, n− 1, k|Hint|−, n, k〉|2

ε
(0)
−,n − ε

(0)
+,n−1

]
, (8)

where pn = 1 − δn,0/2. (The factor pn takes care of
transitions involving the n = 0 LL, which is half filled.)
Using Eq. (5) for the matrix elements we can write Eq. (8)
more explicitly:

∆Eundoped = −N
(evD

2c

)2 A2
em

~ωc
[1 + F (νmax)] , (9)

with F (ν) ≡
∑ν
n=1

(
1√

n+
√
n+1

+ 1√
n+
√
n−1

)
. Once

again, this large negative contribution to the change in
matter energy is spurious. It is present because the Dirac
model with a rigid ultraviolet cut-off νmax breaks gauge
invariance [31]. When a model that is correct at atomic
length scales, for example a π-band tight-binding model,
is used instead, a static vector potential merely reassigns
momentum labels within the full valence band. We com-
pensate exactly for this deficiency of the Dirac model at
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its ultraviolet cut-off scale by adding the positive quan-
tity −∆Eundoped to the change in matter energy.

We now reconsider the situation analyzed earlier in
which the Fermi energy εF lies in conduction band (λ =
+1) between LLs with indices n = M and n = M + 1,
but account for inter-band transitions. The inter-band
correction to the energy shift ∆E

(intra)
M in Eq. (7), can

be calculated using an expression which is equivalent to
Eq. (8) but accounts for Pauli blocking of transitions to
occupied conduction-band states. The final result for the
inter-band contribution is given by

∆E
(inter)
M = −∆Eundoped −N

(evD

2c

)2 A2
em

~ωc

× [F (νmax)− F (M)] ,

= N
(evD

2c

)2 A2
em

~ωc
[1 + F (M)] , (10)

where the term −∆Eundoped takes care of the Dirac
model regularization and Eq. (9) has been used in the last
equality. After noticing that 1+F (M) =

√
M + 1+

√
M ,

we finally obtain

∆E
(inter)
M = N

(evD

2c

)2 A2
em

~ωc
(
√
M + 1 +

√
M) . (11)

The quantity ∆E
(inter)
M is a dynamically-generated inter-

band diamagnetic contribution to the effective Hamilto-
nian Heff , which: i) is independent of cut-off νmax and ii)

satisfies ∆Emat = ∆E
(intra)
M + ∆E

(inter)
M = 0, i.e. in the

limit of a static vector potential, it precisely cancels the
spurious shift (7) responsible for the Dicke model SPT.

Because intra-band transition energies are much lower
than inter-band transitions in the weak-field limit rel-
evant to the strong coupling limit of cavity cyclotron
resonance, we can neglect the frequency dependence of
the dynamically generated quadratic term. This energy
must be added to the effective matter Hamiltonian (6)
for graphene cavity cyclotron resonance:

Heff → Heff + S
DM
2πc2

A2
em , (12)

where DM = 4EMσuni/~ is the Drude weight [29, 31]
expressed in terms of the function EM introduced right
after Eq. (6). This Hamiltonian is the starting point of
the cavity QED theory of graphene cyclotron resonance.
The A2

em quadratic supplement to the Dicke model is
always critical in the strong coupling limit. Eq. (12) is
the most important result of this work.
Quantum Theory—We can quantize the e.m. field by pro-
moting the positive and negative Fourier amplitudes of
Aem to photon annihilation a and creation a† operators:
Aem = Aε(a+ a†), where ε is unit vector describing the
polarization of the e.m. field and A =

√
2π~c2/(εωV )

with V = SLz the volume of the cavity (Lz � L is
the height of the cavity in the direction perpendicular to

graphene) and ε its dielectric constant. When a cavity
model with frequency ω is nearly resonant with the cy-
clotron transition frequency ΩM , the total Hamiltonian
(12) yields a Dicke model supplemented by an A2

em term:

HDicke = ~ωa†a− ΩM
2

N∑
k=1

τzk +
g√
N

N∑
k=1

τxk (a+ a†)

+ κ(a+ a†)2 , (13)

where g = ~ωc

√
2σuni/(εωLz) and κ = ~DM/(εωLz). In

writing Eq. (13) we have assumed a specific polarization
of the e.m. field, i.e. ε = x̂. In the thermodynamic
N → ∞ limit the model (13) undergoes a SPT if the
condition ωΩM (1 + 4κ/ω)/(4g2) < 1 is satisfied [16, 24].
In our case, however, a SPT is forbidden because the
following identity holds true:

g2 = κΩM , (14)

which specifically establishes a no-go theorem for the oc-
currence of a SPT in the graphene cyclotron resonance
cavity QED. It is not a coincidence, and instead follows
directly from the cancellation between paramagnetic and
diamagnetic currents discussed in the first part of this
work. The paramagnetic response of the Hamiltonian
(13) to a static and quasi-homogeneous e.m. field is,
indeed, (g2/N ) limω→0〈〈τxtot; τ

x
tot〉〉ω = −2g2/ΩM , where

τxtot =
∑
k τ

x
k and 〈〈τxtot; τ

x
tot〉〉ω = 2NΩM/(ω

2−Ω2
M ) [32].

According to Eq. (3), this paramagnetic contribution
must be equal in magnitude and opposite in sign to the
diamagnetic response of (13), which is simply 2κ: i.e. it
must satisfy κ = g2/ΩM , which coincides with Eq. (14).
Summary and discussion—We have derived a micro-
scopic effective Hamiltonian - Eq. (12) - for graphene cav-
ity cyclotron resonance, highlighting in particular the role
of gauge invariance and Drude weight. From the point of
view of graphene fundamental physics and quantum op-
tics, Eq. (12) is a key result that can be used to address
a number of subtle issues. First of all, it goes without
saying that Eq. (12) is the proper theoretical tool to an-
alyze graphene cavity cyclotron resonance physics which,
even in the absence of super-radiant phases, retains all
its appeal due to the gate-tunability and versatility of
the active material [2, 4–7, 9]. Useful applications of
Eq. (12) can also be foreseen in studies of the poorly un-
derstood [27] electron-electron interaction corrections to
cyclotron resonance transition energies in graphene and
other Dirac materials. Finally, it is worth mentioning
that our work does not touch upon the interesting pos-
sibility of realizing super-radiant phases when massless
Dirac fermions are driven away from equilibrium.
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