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We report the measurement of field-field and photon-photon correlations of light scattered by two
InAs quantum dots separated by ≈40 µm. Near 4 K a large fraction of photons can be scattered
coherently by each quantum dot leading to one-photon interference at a beam splitter (visibility
≈20%). Simultaneously, two-photon interference is also observed (visibility ≈40%) due to the indis-
tinguishability of photons scattered by the two different quantum emitters. We show how spectral
diffusion accounts for the reduction in interference visibility through variations in photon flux.

PACS numbers: 78.67.Hc, 78.47.–p, 78.55.Cr

Introduction.—Interference is at the heart of all op-
tical phenomena, epitomized by Young’s double-slit ex-
periment, a classical wave effect. In quantum optics, it
is the probability amplitudes of photon trajectories that
interfere, not the photons themselves. As an analogy
to Young’s experiment Eichmann et al. first observed
fringes on a screen positioned at a fixed distance from
two trapped ions due to one-photon interference [1]. In
contrast to Young’s classical experiment, however, inter-
ference fringes could be observed only at low laser inten-
sities, at which the photons are scattered coherently in
the absence of absorption and re-emission [2]. Quantum
mechanically, if an ion were to undergo a transition to its
excited state during the scattering process then it would
become possible to determine which of the two ions emit-
ted the photon. Thus such a case should not yield any
interference fringes.

Despite an absence of one-photon interference, how-
ever, two-photon interference may still be observed.
Hong et al. first showed that single photons with in-
distinguishable spatial properties, temporal properties
and polarizations impinging simultaneously on a 50/50
beam splitter always exit together due to an interference
of probability amplitudes [3]. This type of interference,
now verified extensively with atoms [4, 5], ions [6], sin-
gle molecules [7], and solid-state quantum emitters [8–12]
is expected to play an important role in the realization
of quantum networks, in which remote, often dissimi-
lar, quantum systems must be connected [13]. While
one-photon interference may be observed using classical
sources, two-photon interference requires quantum light
sources although the latter does not preclude the former.

We show here that near-resonant light scattering from
two solid-state two-level systems exhibits both one pho-
ton and two-photon interference. The two-level systems
we use are InAs quantum dots (QDs) in the same semi-
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conductor chip separated by ≈40 µm. In contrast to
prior two-photon interference measurements using photo-
luminescence (PL) [9–12] identical resonance frequencies
for the two emitters are not required because by virtue
of the scattering process, the emission spectrum is cen-
tered at the laser frequency, not the natural frequency of
the two-level system [2]. We show that in fact the scat-
tered light spectra for the two QDs can have large overlap
provided the laser frequency is suitably chosen to lie in
between the resonance frequencies of the two QD transi-
tions. Under such conditions, the only limiting factor to
sizeable interference fringe visibility is spectral diffusion
which causes flickering of the scattered light intensity. A
simple statistical analysis provides close agreement with
our experimental observations of one-photon (≈20%) and
two-photon (≈40%) visibilities.

Experiments.—Our sample, containing InAs QDs at
the center of a planar optical microcavity, is described
in [15]. With narrow linewidths [16], InAs QDs have
revealed unique features of a quantum-coherent system,
such as the Mollow triplet [14, 17–20]. Figure 1 illus-
trates our experiment for probing interference of light
scattered by two spatially separated QD emitters, la-
belled “QDL” and “QDR” at T=3.8 K. In each QD, the
transition from a ground (|0〉) to an excited (|1〉) state
(natural frequency ω0) is near-resonant with an incident
monochromatic laser of frequency ω [Fig. 1(a)]. Here
state |1〉 is a neutral excitonic state. The light scattered
by QDL and QDR is separated, recombined at a beam
splitter, and analyzed by two single photon detectors and
photon counting instrumentation.

The spectral characteristics of QDL and QDR are
shown in Fig. 2. As is seen in an image of the sample
surface [Fig. 2(a)], the QDs are separated by about 40
µm and are well isolated from any background scatterers.
The excitation spectra of Fig. 2(b), obtained by scanning
the laser frequency and recording the total scattered light
intensity, further reveal that the resonance frequencies of
QDL and QDR differ by about 0.6 GHz. Even under
power-broadened conditions, the overlap of the two spec-
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FIG. 1: (Color online) (a) Schematic of two-QD scattering
experiment. In the classical Young’s experiment the scat-
tered light intensity is impinging on a screen recording spa-
tial interference fringes. (b) Experimental setup with the QD
sample inside a cryostat with optical access. An in situ lens
separates the scattered light from “QDL” and “QDR” which
is then recombined at a non-polarizing 50/50 beam splitter
(BS). The relative phase of the two waves is controlled with a
piezoelectric actuator (PZT). Avalanche photon counting de-
tectors (APD) record events at the beamsplitter outputs. A
flip mount (FM) allows to replace one of the QD signals with
a reference local oscillator (LO). For polarization control, a
half-wave plate (HWP) is inserted into one of the arms.

tra is modest. Here the Rabi frequency, Ω, was increased
by increasing the laser intensity. However, despite this
incomplete overlap, the spectra of the light scattered by
QDL and QDR, shown in Fig. 2(c), are almost identical
when the laser detuning, ∆ω = ω−ω0, is suitably chosen,
i.e. ∆ωQDL = −∆ωQDR when ΩQD1 = ΩQD2. The spec-
tra of Fig. 2(c) show the familiar evolution from coherent
to incoherent scattering [15, 21, 22].

One-photon interference was investigated by recording
field-field correlations via the light intensity at the out-
put of the beam splitter in Fig. 1(b). The relative path
length travelled by the light scattered by QDR was var-
ied with a piezoelectric actuator. The resulting fringe
contrast, obtained as the difference between the intensi-
ties at the beam splitter outputs divided by their sum,
is shown in Fig. 3. When interfering the signals from
the two QDs [Fig. 3(a-c)], fringe contrasts are as large
as 20% whereas replacing one of the inputs with a lo-
cal oscillator [Fig. 3(d-f)] increases the fringe contrast to
about 50%. Note that in PL experiments, which lack a
well-defined phase relationship between the incident laser
and the emitted light, no such interference is ever possi-
ble. It is the coherent part of the scattered light, illus-
trated by the shaded part of the spectra in Fig. 2(c) that
gives rise to the fringes.

Two-photon interference was investigated by recording
correlations between photons from the two beam split-
ter output ports. Experimental second-order correlation
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FIG. 2: (Color online) (a) Image of sample surface showing
the two QDs investigated. (b) Excitation spectra for QDL
(solid red trace) and QDR (dashed blue trace) at several Rabi
frequencies. (c) Corresponding experimental (top) and theo-
retical (bottom) high-resolution spectra of the scattered light
at ∆ω/2π = 0.3 GHz. At saturation, i.e. when Ω = κ/

√
2,

the laser power before entering the cryostat was 4 µW.

functions, g(2)(τ), are shown in Fig. 4, for light from
each QD alone [Fig. 4(a)], for light from both QDs with
parallel polarizations [Fig. 4(b)], and for light from both
QDs with perpendicular polarizations [Fig. 4(c)]. The
raw interference visibility is as large as 44%, but is lim-

ited here by g
(2)
‖ (0) which is increased from zero primarily

due to the detectors’ finite resolution. The detectors’ in-
strument response function (IRF), shown in the upper
left panel of Fig. 4(a), has been convolved with the theo-
retically expected g(2)(τ) to obtain the solid lines in Fig.
4(a) [15].

Both one-photon (Fig. 3) and two-photon (Fig. 4)
interference visibilities differ significantly from those ex-
pected from two ideal radiatively-broadened two-level
quantum systems. For the former we expect almost unity
fringe contrast at sufficiently low laser power, i.e. when
most of the light is scattered coherently. For the latter,

we expect g
(2)
⊥ (τ) ≈ 0.5 and g

(2)
‖ (τ) ≈ 0. Nonetheless,

the data of Fig. 3 and 4 provide for the first time clear
evidence of strong coalescence of two single photons res-
onantly scattered from two remote solid-state emitters.

Theoretical analysis.—We carried out a statistical
analysis that accounts for the fluctuations of QD res-
onance frequencies due to spectral diffusion [15, 23–
26]. Spectral diffusion is often directly visible in the
form of fluctuations of the scattered light intensity, as
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FIG. 3: (Color online) (a-c) One-photon interference between
light scattered by QDL and QDR for three different Rabi fre-
quencies. (d-f) One-photon interference between light scat-
tered by QDL and the local oscillator for the same Rabi fre-
quencies. The dashed data lines were obtained with one of
the input polarizations rotated by 90 degrees.

seen in Fig. 5(a). These fluctuations occur as a re-
sult of random Stark shifts, of magnitude δStark, of the
homogeneously-broadened excitonic resonance. The ho-
mogeneous linewidth, κ, is set by radiative relaxation
with decay constant τ = 1/κ [16, 27]. Typically τ ≈ 0.9
ns, so κ/2π ≈ 180 MHz. The total scattered light inten-
sity as a function of laser detuning (integrated over all
detection frequencies) is then given by [2]:

Itot = n∞ =
Ω2/4

(∆ω + δStark)2 + κ2/4 + Ω2/2
(1)

which is the population inversion at times long compared
to the quantum evolution of the two-level system, but
short compared to the spectral diffusion timescale. We
thus assume a Stark shift that is static on the timescale
of the quantum evolution of the two-level system, a jus-
tification for which can be found in [15]. The intensity
of the coherent portion of the scattered light is given by
[2]:

Icoh = |α∞|2 =
Ω2

4

(∆ω + δStark)2 + κ2/4(
(∆ω + δStark)2 + κ2/4 + Ω2/2

)2
(2)

where α∞ is the steady-state coherence of the two-level
system.

Both linear and quadratic Stark shifts are found in
QDs [29–31]. Thus, in general, δStark(V ) ≈ c1V + c2V

2.
If we assume that the electrical potential, V , at the
location of the QD is fluctuating around zero (with-
out loss of generality) following a normal distribution,

PV (V ) = e−V
2/2σ2

/σ
√

2π, then we can find the average
value of the intensity as,

〈Itot(∆ω)〉 =

∫
g(V )PV (V )dV (3)

where g(V ) = n∞(δStark(V )). By comparison of Eq. (3)
with the excitation spectra of Fig. 2(b) we obtain best fit
parameters, c1 and c2, which are tabulated in [28]. There,
a justification for our model is given and it is shown that
while the linear term in the Stark shift is dominating, the
quadratic term gives rise to the slight asymmetry of the
excitation spectra, visible in Fig. 2(b) for large Ω.

The distribution of the intensity of the scattered light

is found as PI(I) = PV (g−1(I))
∣∣∣ ddI g−1(I)

∣∣∣, where g−1

is the inverse of the function g. PI(I) is obtained ex-
perimentally as the histogram of the time trace in Fig.
5(a), shown in Fig. 5(b). The histogram closely follows
the expected theoretical expression plotted as a solid red
line in Fig. 5(b). With the distribution function, PI(I),
we can calculate the theoretically expected fringe con-
trast for the data in Fig. 2. The one-photon fringe vis-
ibility, V(1), is given by the normalized first-order cor-
relation function of the two fields at the beam split-
ter, as V(1) =

〈
U∗1U2

〉
/
√
〈I1〉〈I2〉, where Uk = Ake

−iωt

(k = 1, 2) are the amplitudes of the electric field of the
two waves entering the beam splitter. The correspond-
ing average intensities are given by Ik =

〈
U∗kUk

〉
. When

one of the fields is the scattered light from a QD and
the other is a local oscillator (LO) with the same average
intensity, then

V(1)
QD,LO =

〈√
Icoh

〉√〈
Itot
〉 =

∫
|α∞(δStark(V ))|PV (V )dV√∫
n∞(δStark(V ))PV (V )dV

(4)

Similariliy, if the two fields correspond to the scattered
light from QDL and QDR, respectively, with mutually
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FIG. 4: (Color online) (a) Second-order correlation function
for the light scattered by QDL (top) and QDR (bottom).
Measured average count rates at each detector were 3×104s−1.
(b) Correlation function when light scattered from both QDL
and QDR are entering the beam splitter. (c) Same but with
the polarization of the two inputs perpendicular.
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FIG. 5: (Color online) (a) Temporal flickering of the scattered
light for a QD in the same sample as QDL and QDR. (b) His-
togram of the signal in (a), plotted together with theoretical
probability distributions that assume a purely linear (solid
red line), and a purely quadratic (dashed orange line) Stark
shift. The inset shows the corresponding excitation spectrum
and a theoretical fit.

TABLE I: Summary of one-photon interference visibilities

Experimental Theoretical Theoretical
(no spect. diff.)

Ω/2π (GHz) QD-LO QD-QD QD-LO QD-QD QD-LO QD-QD

0.15 0.29 0.16 0.70 0.49 0.95 0.90
0.21 0.44 0.19 0.68 0.46 0.90 0.81
0.46 0.51 0.15 0.63 0.39 0.69 0.48

uncorrelated intensity fluctuations, then V(1)
QDL,QDR =〈√

Icoh
〉2
/
〈
Itot
〉
. Using experimentally obtained values

for ∆ω and values for c1, c2, and σ that best match our
excitation spectra of Fig. 2(b) and the statistical distri-
bution of Fig. 5(b) [28], we obtain the values summarized
in Table I.

Theoretical visibilities of the second-order interference
experiment of Fig. 4 can be calculated in a similar man-
ner, starting from an expression for the second-order cor-
relation function written in terms of the autocorrelation
functions of the constituent signals [7]. In particular, at τ

= 0, g
(2)
⊥ (0) =

(
I2Lg

(2)
L (0) + I2Rg

(2)
R (0) + 2ILIR

)
/(IL + IR)2

and g
(2)
‖ (0) =

(
I2Lg

(2)
L (0) + I2Rg

(2)
R (0)

)
/(IL + IR)2, where

IL (IR) is the intensity of the light scattered from QDL

(QDR) and g
(2)
L (τ) [g

(2)
R (τ)] the corresponding second-

order autocorrelation function. With the known prob-
ability distribution function of Eq. (4), time averages,

〈g(2)⊥ (τ)〉 and 〈g(2)‖ (τ)〉, can be obtained as in Eq. (3).

The theoretically calculated 〈g(2)⊥ (0)〉=0.3 (Ω/2π=0.12
GHz) is in close agreement with the observed value in
the upper right panel of Fig. 4.

Discussion.—Although our model does not precisely

describe the experimental one-photon and two-photon
visibility, it qualitatively captures its main limiting fac-
tors. In the absence of spectral diffusion, the one-photon
interference visibility is expected to reach unity when
Ω � κ, i.e. when most of the light is scattered coher-
ently, and vanish when Ω� κ. Spectral diffusion affects
this visibility by causing an increase in the fraction of
coherently scattered light, as shown in [15], and by intro-
ducing a flickering of the scattered light intensity, which
causes an “apparent” reduction in visibility due to varia-
tions in photon flux at the beam splitter. The two-photon
interference visibility, on the other hand, is expected to
be unity for any Ω, but is reduced in the presence of
spectral diffusion due to variations in photon flux at the
beam splitter. For large Ω, the two-photon visibility is
further affected by the finite time resolution of our setup,
which makes the value of g(2)(0) seem larger due to the
reduction in width of the anti-bunching dip.

Note that our simplified model relies on a number of
assumptions [28], ignoring anisotropic field fluctuations
[32] and any contributions due to experimental factors
such as interferometer misalignment or the fact that a
small fraction of photons are always scattered incoher-
ently due to interactions with phonons [33]. At 3.8 K,
this fraction is about 5% [15].

Conclusion.—We have probed interference of photons
scattered by two InAs QDs that are spatially well sepa-
rated. Despite their atom-like behavior, QDs are highly
sensitive to their solid-state environment and small po-
tential fluctuations can have a strong impact on their
optical properties. Accordingly we find fringe visibilities
significantly reduced from unity. However, the source of
this reduction is extrinsic in the sense that it is due to
an averaging process over many random realizations of
QD detunings due to spectral diffusion. With removal or
circumvention of spectral diffusion large visibilities may
be expected, bringing about exciting opportunities for
coherent control in solid-state systems. For example,
with the neutral exciton transition replaced by a trion
transition, remote entanglement of single spins may be
achieved [5, 6]. Like other approaches [34, 35], the one
presented here could forgo, possibly in a scalable manner,
the need for tuning independent quantum systems into
spectral resonance in order to obtain two-photon inter-
ference [7, 10, 11].
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Physics 5, 198 (2009).
[20] S. Ates et al., Phys. Rev. Lett. 103, 167402 (2009).
[21] H. S. Nguyen et al., Appl. Phys. Lett. 99, 261904 (2011).
[22] C. Matthiesen, A. N. Vamivakas, and M. Atatüre, Phys.
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