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First-principles calculations of photoluminescence spectrum lineshapes for defects in

semiconductors: The example of GaN and ZnO

Audrius Alkauskas, John L. Lyons, Daniel Steiauf, and Chris G. Van de Walle
Materials Department, University of California, Santa Barbara, California 93106-5050, USA

We present a theoretical study of broadening of defect luminescence bands due to vibronic cou-
pling. Numerical proof is provided for the commonly used assumption that a multi-dimensional
vibrational problem can be mapped onto an effective one-dimensional configuration coordinate di-
agram. Our approach is implemented based on density functional theory with a hybrid functional,
resulting in luminescence lineshapes for important defects in GaN and ZnO that show unprecedented
agreement with experiment. We find clear trends concerning effective parameters that characterize
luminescence bands of donor- and acceptor-type defects, thus facilitating their identification.

PACS numbers: 63.20.kp, 61.72.Bb, 71.55.-i, 78.55.Cr

Defects play a key role in the properties of solids. From
the early days of color centers, the study of luminescence
and absorption has been crucial to defect characteriza-
tion [1]. Theoretical efforts to calculate the broadening of
optical transitions at defects due to the interactions with
lattice vibrations were pioneered by Huang and Rhys [2]
and Pekar [3]. While those theories and their general-
izations [1, 4] have been very successful in describing the
shape of experimental optical bands [1, 5], this inevitably
required the use of empirical fitting parameters. Theory
has thus been limited in its ability to aid the microscopic
identification of defects or produce accurate predictions.

In this Letter we report that unprecedented precision
can now be achieved by rigorously mapping the multi-
dimensional vibrational problem onto an effective one-
dimensional configuration coordinate diagram, combined
with advanced electronic structure techniques [6, 7]. We
demonstrate the power of the approach with the example
of a number of defects in GaN [5] and ZnO [8], two tech-
nologically crucial wide-band-gap semiconductors. Ex-
cellent agreement with experiment is achieved for well-
characterized defects, and new insights into vibronic cou-
pling emerge.

Our electronic structure calculations are based on den-
sity functional theory using the hybrid functional of Ref.
[7] in the vasp code [9]. The fraction α of the screened
Fock exchange admixed to the semilocal exchange was set
to 0.31 for GaN and 0.36 for ZnO to obtain band gaps
very close to experimental ones (3.5 eV and 3.3 eV). By
describing bulk electronic structure better and reducing
self-interaction errors, hybrid functionals substantially
improve the accuracy of defect calculations [10–12]. De-
fects were treated via the supercell approach [6], the in-
teraction with nuclei was described within the projector-
augmented wave formalism [9], and electron wave func-
tions were expanded in plane waves with a cutoff of 400
eV. Normal modes and frequencies have been calculated
using finite differences.

We illustrate the methodology with the example of the
MgGa acceptor in GaN, a crucial defect since it is the
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FIG. 1: (Color online) 1D configuration coordinate diagram
describing optical absorption and emission at a point defect.
The minima of the ground-state and excited-state potential
energy surfaces are displaced. ∆E{e,g} are the relaxation en-
ergies and Ω{e,g} the effective phonon frequencies. ZPL in-
dicates the zero-phonon line, i.e. the transition between the
zero-point vibrational states in excited and ground-state con-
figurations.

only acceptor impurity capable of making the material
p type. While electrically acting as a shallow impurity
with modest ionization energy, optically MgGa behaves
as a deep center [13]: recombination of an electron at the
conduction-band minimum (CBM) with a hole localized
on the neutral Mg0Ga acceptor gives rise to a broad blue
luminescence band [5, 13]. The calculated zero-phonon
line (ZPL) energy (see Fig. 1) is 3.24 eV. We assume here
that optical transitions start with a delocalized charge
carrier; excitonic effects are small [14].

The general theory of luminescence was described in
Refs. [1, 2, 4]. When optical transitions are dipole-
allowed, as is the case for the defects studied in this
work, at finite T the normalized luminescence inten-
sity (lineshape) in the leading order can be written as
G(~ω) = Cω3A(~ω), where A(~ω) is the normalized
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spectral function

A(~ω) =
∑

m,n

wm(T ) |〈χem|χgn〉|
2
×

×δ (EZPL + ~ωem − ~ωgn − ~ω) , (1)

and C−1 =
∫

A(~ω)ω3d(~ω). The sum runs over all
vibrational levels ωem and ωgn of the excited and the
ground state (wm(T ) being thermal occupation of the
former), χ are ionic wavefunctions, and EZPL is the en-
ergy of the ZPL. Such formulation constitutes the Franck-
Condon approximation in which it is assumed that the
electronic transition dipole moment is independent of
ionic coordinates [1].

Evaluation of A(~ω) is complicated by the fact that,
first, the sum includes all relevant vibrational degrees of
freedom, and second, normal modes Qe and Qg in the
excited and the ground state are usually not identical.
The two are related via the Duschinsky transformation
Qe = JQg + ∆Q [15], and 〈χem|χgn〉 are thus highly-
multi-dimensional integrals. For small molecular systems
recursive techniques to calculate such integrals have been
developed [16] and implemented [17]. The large number
of vibrational modes that occur for defects in solids ren-
der such a direct approach computationally prohibitive.
Broad optical bands have most often been described

via 1D configuration-coordinate diagrams (CCDs) [1, 4]
[Fig. 1], based on the assumption that the large number of
vibrational modes (with different frequencies) contribut-
ing to the lineshape can be replaced by a single effective
mode (sometimes a small number of modes). The pa-
rameters entering the 1D model are the modal mass M
of the effective vibration, the displacement of the po-
tential energy minima ∆R, and the effective frequencies
Ωg and Ωe [Fig. 1]. Based on these, the widely used
“Huang-Rhys (HR) factors” [2] are defined as the average
number of phonons created during a vertical transition:
Sg = ∆Eg/~Ωg and Se = ∆Ee/~Ωg. There are many
examples where a 1D model with empirical fitting pa-
rameters provides a good approximation to experimental
luminescence lineshapes [1, 5]; still, because it is strictly
valid only when all the modes have the same frequency
[2], its general applicability has often been questioned.
More importantly, the use of fitting parameters precludes
linking to potentially valuable microscopic information
about the defect and limits the predictive power.
Here we address this problem using the following strat-

egy. Vibrations that couple strongly to the distortion
of the geometry are expected to be dominant in A(~ω).
Such modes have finite weight on the atoms that experi-
ence the largest relaxations, i.e., the atoms close to the
defect. When only a small number of atoms are included,
〈χem|χgn〉 can be evaluated exactly, taking mode mixing
into account [16, 17] This exact evaluation can then serve
as a test of the accuracy of any approximations. Once an
approximate treatment has been validated in this fashion,
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FIG. 2: (Color online) Normalized luminescence spectrum of
the MgGa(0/−) transition, calculated taking into account vi-
brational modes of only those atoms that relax most (labelled
in the inset). Black solid line (and shaded area): calculation
including mode mixing; blue dashed line: parallel-mode ap-
proximation; red solid line: effective 1D vibrational problem.

it can be applied to much larger systems of atoms pro-
vided it is sufficiently less numerically demanding than
the exact evaluation.

In the case of Mg0Ga a hole is localized on a N neigh-
bor of the Mg atom, and the five atoms surrounding this
hole account for more than 90% of the whole relaxation.
The calculated luminescence lineshape, taking mixing be-
tween the resulting 15 vibrations into account, is shown
in Fig. 2. Multi-dimensional overlap integrals were cal-
culated using the molfc code [17]. We have applied a
Gaussian smearing with a small σ=0.01 eV to simulate
additional broadening mechanisms, resulting in a smooth
lineshape.

Recursive algorithms [16] lead to exploding computa-
tional requirements when applied to larger atom clus-
ters. A simplification that is often used for molecules
[17] and almost always implied in solids [4] is the parallel-
mode approximation, in which the eigenmodes of either
the ground state or the excited state are chosen as com-
mon vibrational states, leading to J=1. 〈χem|χgn〉 then
factorizes into 1D integrals, each corresponding to one
vibrational mode, greatly reducing computational com-
plexity. As seen in Fig. 2, the resulting lineshape is in-
deed close to the exact result. Therefore, while mode
mixing is present, it is not substantial.

Now that we have validated the parallel-mode approx-
imation we can include more atoms, since overlap inte-
grals become easy to calculate. However, the number of
terms that have to be included grows very rapidly with
system size. This reflects the fact that important modes
often do not occur in the gap of the bulk phonon spec-
trum but are resonances, and therefore not well localized
in real space. Consequently, further approximations are
required. This we achieve by devising a suitable 1D CCD
based on computed parameters as outlined below.

The weight by which each normal mode k contributes
to the distortion of the defect geometry during optical
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transition can be written as pk = (∆Qk/∆Q)2, where

∆Qk =
∑

αi

m1/2
α ∆Rαiqk;αi; (∆Q)

2
=

∑

k

∆Q2
k . (2)

Here α labels atoms, i={x, y, z}, ∆Rα,i = Re;α,i −Rg;α,i

is the distortion vector, R{e,g};α,i are atomic coordinates,
and qk;αi is the unit vector in the direction of the normal
mode k (

∑

αi qk;αiql;αi = δk,l). We find that it is useful
to define an effective frequency

Ω2
{e,g} =

〈

ω2
{e,g}

〉

=
∑

k

p{e,g};kω
2
{e,g};k, (3)

where ω{e,g};k is the frequency of the mode q{e,g};k.

ParametersEZPL, ∆Q, Ωg and Ωe define a 1D CCD (cf.
Fig. 1) for a quantum oscillator with unit mass and can
be used to calculate the luminescence lineshape. Gaus-
sian smearing is still applied, but it should now reflect
the replacement of many vibrations at various frequen-
cies with one effective frequency. Inspection of the mean-
square deviation for the distribution of phonon frequen-
cies that contribute to the distortion leads to σ=0.025
eV (∼ 0.6~Ωg). The result for MgGa in Fig. 2 shows that
our rigorously defined 1D model is an excellent approxi-
mation to the multi-dimensional calculations.

Now that the validity of the 1D model has been estab-
lished, it can be extended to larger numbers of atoms and
we no longer need to explicitly calculate normal modes
and frequencies to determine the effective parameters ∆Q
[Eq. (2)] and Ω{e,g} [Eq. (3)]. Indeed, by inserting the ex-
pression for ∆Qk into the one for ∆Q in Eq. (2), one can
show that when all the atoms in the supercell are included
in the vibrational problem, (∆Q)

2
=

∑

α,imα∆R2
αi.

The modal mass is defined via ∆Q = M1/2∆R, where
(∆R)

2
=

∑

α,i∆R2
αi. Effective frequencies Ω can be ob-

tained by mapping the potential energy surface around
the respective equilibrium geometries along the path that
linearly interpolates between the two geometries [18]. A
third-order polynomial fit was found to suffice in all cases.
The frequency Ω in the quadratic term defined in this way
is equivalent to the one calculated from Eq. (3). In the
case of low-temperature spectra, third-order anharmonic
corrections that affect vibrational wavefuntions and thus
overlap integrals, were included in the calculations of the
spectral function perturbatively. For all subsequent cal-
culations, we have used 96-atom wurtzite supercells, and
relaxations of all the atoms were included in determin-
ing effective parameters. The resulting parameters are
summarized in Table I.

The luminescence lineshape G(~ω) for MgGa at T=0
K is shown in Fig. 3(a), together with experimental low-
temperature data from Refs. [19] and [20]. To facilitate
comparison with experiment, the calculated lineshapes
were shifted to bring the maximum of the luminescence
in agreement with that of the experimentally measured
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FIG. 3: (Color online) Calculated (solid lines) and measured
(symbols) luminescence lineshapes for (a) MgGa in GaN, (b)
CN in GaN, (c) VN in GaN, and (d) NO in ZnO. The arrows
indicate the ZPL, and the calculated spectra were shifted by
∼0.1 eV, as discussed in the text. In (a), the experimental
spectrum of Ref. [19] has been used as a reference in this
prcedure.

curves. The magnitude of the shift provides an esti-
mate for the error in the EZPL (thermodynamic tran-
sition level), and is less than 0.12 eV for all defects. This
error bar reflects both the remaining inaccuracy of even
the most advanced first-principles methods, and any elec-
trostatic corrections (such as excitonic effects or donor-
acceptor interactions) not included in the present model.
The width of the theoretical band (0.44 eV) is only
slightly larger than the experimental value of 0.36-0.37
eV. We derive the effective vibrational frequency in the
ground state Ωg=47 meV, and the HR factor Sg=12.2.
Overall, the good agreement between the calculated and
experimental lineshapes for MgGa attests to the power of
the approach presented here, when used in combination
with state-of-the-art density functional calculations.

The agreement with experiment is even better for our
second example, CN. This defect has been suggested as
a source of yellow luminescence (YL) [5, 22, 23] based on
the transition C0

N+e−→C−
N [21] (where e− is an electron

at the CBM). This defect again exhibits hole localization
in the neutral charge state, but now the hole is local-
ized on the C atom [21]. The calculated luminescence
lineshape at T=77 K [Fig. 3(b)] agrees very well with
the measurements of Ref. [23], in which YL was convinc-
ingly attributed to a C-related defect. Our calculated ef-
fective frequencies (Ω{e,g}=36, 42 meV) and HR factors
(S{e,g}=10.3, 11.2) are in an excellent agreement with
those measured in Ref. [22] (Table I).
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TABLE I: Effective parameters for various defect-related luminescence transitions in GaN and ZnO. ∆Q and ∆R: total mass-
weighted and total distortions; M : modal mass; Ω{e,g}: effective frequencies in the ground and excited states (charge state
in parentheses); EZPL: zero-phonon line energy; FWHM: full-width at half maximum of the band; T: temperature for which
the FWHM is given; S{e,g}: Huang-Rhys factors. If experimental parameters are not explicitly given in the corresponding
experimental papers, they are extracted using the original data and are shown in italics.

Defect, charge states, ∆Q M ∆R Ωg Ωe EZPL FWHM at T Sg Se

and optical transition Method (amu1/2Å) (amu) (Å) (meV) (meV) (eV) (eV, K)
MgGa (0/−) in GaN theory 1.59 45 0.24 47 (−) 34 (0) 3.24 [13] 0.44 at 0 K 12.2 -
Mg0Ga + e− → Mg−Ga expt. 3.30 [19] 0.36 at 13 K [19]

3.36 [20] 0.37 at 8 K [20]

CN (0/−) in GaN theory 1.55 51 0.22 42 (−) 36 (0) 2.60 [21] 0.35 at 77 K 11.2 10.3
C0

N + e− →C−
N expt. 41±5 40±5 [22] 2.64 [22] 0.39 at 77 K [23] 12.8±1.6 13.4±1.7 [22]

VN (+3/+2) in GaN theory 3.72 68 0.45 23 (+2) 21 (+3) 3.02 [24] 0.33 at 0 K 36.0 34.8
V +3
N + e− → V +2

N expt. 3.07 [25] 0.36 at 5 K [25]
NO (0/−) in ZnO theory 1.92 48 0.28 40 (−) 32 (0) 2.20 [12] 0.54 at 300 K 15.3 15.1
N0

O + e− → N−1
O expt. 2.30 [26] 0.55 at 300 K [26]

Our next example is VN. Nitrogen vacancies have low
formation energies in p-type GaN, and they have been
suggested [24] as a cause of the YL in p-GaN observed in
Ref. [25]. The calculated luminescence lineshape for the
transition V +3

N +e−→ V +2
N [Fig. 3(c)] shows impressive

agreement with these low-temperature experiments.

To demonstrate that the approach is not limited to
GaN, in Fig. 3(d) we compare the calculated and mea-
sured [26] luminescence lineshapes at T=300 K for the
deep NO acceptor in ZnO, corresponding to the transi-
tion N0

O+e− →N−1
O [12]. The agreement between theory

and experiment is again extremely good.

Our ability to calculate accurate parameters allows us
to examine some general trends. For the two substitu-
tional acceptors in GaN analyzed above, total distortions
∆R amount to 0.22− 0.24 Å, and HR factors to 10− 12,
irrespective of whether the hole is bound to C or N. Other
acceptors with anion-bound holes (VGa, BeGa, ZnGa)
show very similar behavior. The donor VN, on the other
hand, is very different. Its defect wave function is com-
posed mainly of Ga 4s states, and ∆R associated with
the (+3/+2) transition is 0.45 Å, almost twice as large as
in the case of acceptors. The distortion mostly affects the
four nearest Ga atoms, leading to a large modal mass and
small effective frequencies (Table I). In conjunction with
large relaxation energies (0.72 and 0.82 eV) this results
in very large HR factors (S{e,g} = 34.8, 36.0). This is in
contrast with the acceptors, where anions are involved in
the distortion, leading to smaller modal masses, higher
effective vibrational frequencies, and hence more than
twice smaller HR factors. Similar trends are observed for
ZnO: we find Ω{e,g}=28-40 meV and S{e,g} <23 for ac-
ceptors with anion-localized holes (NO, VZn, LiZn) while
Ω{e,g}=16, 21 meV and S{e,g}≈50 for donors with cation-
derived states (VO). The general result for acceptors in
ZnO is in accord with experimental data of Ref. [27].

While such a posteriori interpretations are simple and

intuitive, they are only reliable if based on an accu-
rate microscopic description of the defect. We note that
model calculations have yielded results that were very
different from our first-principles values (e.g., S=3.5−6.5
for defects related to YL in Ref. [28]), starkly illustrating
the shortcomings of such approaches.

High values of HR factors mean that it is very difficult
to determine the ZPL in experimental luminescence spec-
tra. Indeed, the weight of the ZPL is exponentially su-
pressed for larger S: |〈χe0|χg0〉|

2
≈ exp{−S{e,g}} (equal-

ity holds for Ωg = Ωe [2]). As seen in Fig. 3, this compli-
cation arises for all the defects studied here and is espe-
cially apparent for VN. This highlights the practical use
of calculations exemplified in the current work.

The examples have demonstrated that our methodol-
ogy is capable of producing luminescence lineshapes in
very good agreement with experiment, as well as quan-
tities that can be directly compared with experimental
parameters. The achieved agreement is based on the ac-
curacy of the underlying electronic structure method, but
also on the applicability of the 1D model to broad lu-
minescence bands. While the explicit consideration of
many vibrational modes is sometimes needed to under-
stand the experimental spectra when S ≈ 1 (i.e., defects
with moderate electron-phonon coupling) [1, 4, 29], we
have demonstrated that a 1D model with suitably calcu-
lated parameters is valid for defects with large electron-
phonon coupling (S ≫ 1), even if many phonon modes
couple to the optical transition. Our calculations have
provided theoretical evidence that the effective mode fre-
quency is usually indeed much smaller than that of LO
phonons (91 meV in GaN and 73 meV in ZnO), contrary
to what has been often assumed in phenomenological ap-
proaches [2, 28]. Our conclusion is in full agreement with
detailed experimental measurements for color centers in
alkali halides [30], indicating the generality of the ob-
tained result.
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Our findings are important for future studies of semi-
conductors and insulators that exhibit broad defect lumi-
nescence bands. In particular, the developed methodol-
ogy will assist the identification of the microscopic origin
of numerous as yet unassigned bands in technologically
important wide-band-gap materials. More generally, our
work attests to the success of first-principles methods to
describe electron-phonon interactions in solids [31] be-
yond the application to perfect crystals.
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