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One of the simplest proposed experimental probes of a Majorana bound-state is a quantized
(2e2/h) value of zero-bias tunneling conductance. When temperature is somewhat larger than the
intrinsic width of the Majorana peak, conductance is no longer quantized, but a zero-bias peak
can remain. Such a non-quantized zero-bias peak has been recently reported for semiconducting
nanowires with proximity induced superconductivity. In this paper we analyze the relation of the
zero-bias peak to the presence of Majorana end-states, by simulating the tunneling conductance
for multi-band wires with realistic amounts of disorder. We show that this system generically
exhibits a (non-quantized) zero-bias peak even when the wire is topologically trivial and does not
possess Majorana end-states. We make comparisons to recent experiments, and discuss the necessary
requirements for confirming the existence of a Majorana state.

Recent proposals[1–7] to build topological supercon-
ductors from conventional spin-orbit coupled systems
have sparked an active experimental effort to realize Ma-
jorana fermions and probe their predicted non-Abelian
exchange statistics. Tunneling from a normal wire into a
topological superconducting wire with a Majorana end-

state yields a quantized G(0) = 2e2

h
conductance peak

at zero-bias[8–10]. This quantized zero-bias peak (ZBP)
constitutes one of the simplest and most direct experi-
mental probes for a Majorana fermion, and is likely to
be the first test conducted on any putative topological su-
perconducting wire. The observation of quantized zero-

bias conductance withG(0) = 2e2

h
ZBP requires tempera-

ture, T to be sufficiently smaller than the intrinsic width,
γ, of the Majorana peak, due to hybridization with the
normal lead. For T comparable to or somewhat larger
than γ a ZBP may still occur, but is no longer quantized

and can take any value less than 2e2

h
[8–10].

A recent set of experiments on InSb nanowires coated
with a superconducting NbTiN layer report the obser-
vation of non-quantized ZBP’s when a magnetic field of
sufficient strength is applied along the wire[11]. Similar
results have since been reported by other groups[12, 13].
These experimental observations are qualitatively con-
sistent with the existence of Majorana end-states, and
constitute an important first step towards the realiza-
tion of Majorana fermions in solid-state systems. Given
the potential significance of these findings, it is impor-
tant to build a more quantitative understanding of the
experimental system. In particular, we would like to es-
tablish whether observed non-quantized ZBP’s definitely
correspond to thermally broadened peaks from Majorana
end-states, or whether they could be produced by some
other mechanism.

To this end, we have conducted numerical simula-
tions of tunneling conductance for spin-orbit coupled
wires with proximity-induced superconductivity. Our
simulations use realistic energy scales appropriate for
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FIG. 1. (Top) Schematic of tunneling geometry. (Lower Left)
Dispersion of sub-bands in multi-band wire. Each sub-band
is split by µ0B due to the magnetic field. Majorana fermions
appear only when an odd number of sub-bands is occupied.
(Lower Right) Color plot of tunneling conductance, G, at fi-
nite temperature as a function of applied field µ0B and lead-
wire voltage, V , for a multi-band wire with realistic amounts
of disorder (see Fig. 3 for detailed parameters). A stable zero-
bias peak appears despite the fact that there is no Majorana
end-state. At lower temperature, the peak is revealed to come
from a cluster of low-energy states (see Fig. 3).

InSb wires, and consider the various experimentally rel-
evant non-idealities including: multiple occupied sub-
bands[14–17], modest amounts of disorder[15, 18–20],
and non-zero temperature. Our study reveals impor-
tant features absent in previous studies of clean- or very
weakly disordered wires[21–24].
We find that, at non-zero temperature and in the pres-

ence of multiple sub-bands and weak disorder, zero-bias
peaks generically occur even when the wire is in the topo-
logically trivial regime and does not have Majorana end-
states. Furthermore, we find that the ZBP’s persist even
when disorder is sufficiently strong to destroy the topo-
logical phase and fuse the Majorana fermions on each
side of the wire[15, 18–20]. Such ZBP’s are also found
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outside the range in chemical potential where Majorana
end states are expected in the clean limit, and are pro-
duced by ordinary fermion states localized to the wire
ends and clustered near the Fermi-energy. These states
are in some sense, remnants of Majoranas, and appear
and disappear with magnetic field in the same way as
true Majorana end-states. Therefore, we argue, that the
only way to definitely rule out a non-topological origin
to the ZBP is to lower temperature below the thermally
broadened regime and observe a truly quantized zero-bias
conductance peak, well isolated from other background
states.
Model – We consider a three-dimensional rectangular
wire of length Lx along the x̂ direction and cross sectional
area Ly×Lz in the yz-plane. The continuum Hamiltonian
for the spin-orbit coupled wire without proximity induced
superconductivity is:

H = (1)

∑

r

c†
r,α

(−∇2

2m
− µ− iαRẑ · (σ ×∇)− µ0B · σ

)

αβ

cr,β

Here αR is the Rashba velocity, related to the spin orbit
coupling by Eso = 1

2mα2
R, µ=

gµB

2 is the Zeeman coupling
to the magnetic field B taken throughout to point along
the wire (in the x̂ direction), and ∆0 is the proximity–
induced pairing amplitude.
To model this system, we approximate the contin-

uum Hamiltonian by the following discrete tight binding
Hamiltonian, defined on a Nx ×Ny ×Nz site prism:

Htb =
∑

r,d

c†
r+d,α

[

−tδαβ − iURẑ ·
(

σαβ × d̂
)]

cr,β−

−
∑

r

c†
r,α [µδαβ + µ0B · σαβ ] cr,β+

+ Vimp(r)
∑

r

c†
r,αcr,α (2)

Here, we have included a random impurity potential
Vimp(r), which is chosen independently for each site, iden-
tically distributed according to a Gaussian with variance
V (r)V (r′) = W 2δr,r′ , where (· · · ) indicates averaging
with respect to disorder configuration.
Table I relates the tight-binding parameters to the

continuum model and gives estimated values for InSb
nanowires. There is considerable uncertainty in the esti-
mated spin-orbit strength, which was measured without
the superconducting layer[25]. Since Eso derives solely
from the inversion symmetry breaking potential of the
substrate-wire and superconductor-wire interfaces, the
actual value could be rather different than 50µeV, and
one should consider the possibility that Eso is much
smaller (or larger). The mean-free path from disor-

der is ℓ = vF τ where τ−1 ≈ 2π W 2a
LyLz

N(µ) is the elas-

tic scattering rate due to impurities. Here N(µ) is the

Parameter Symbol TB Equivalent InSb Value
Wire Diameter Ly,z Ny,za 100nm
Wire Length Lx Nxa ≈ 2-3µm
Band Mass m (2ta2)−1 0.015me

Spin-Orbit Eso = 1

2
mα2

R UR =
√
Esot 50µeV

Induced SC Gap ∆0 ∆0 250µeV[25]
Mean Free Path ℓ (see text) ≈ 3µm[26]

Min. Temperature T 0.03∆0

TABLE I. Tight-binding (TB) model parameters, and esti-
mated values for InSb/NbTiN experiment[11]. a denotes lat-
tice spacing in the TB model.

1D density of states at the chemical potential: N(µ) =
∑

n
1

2πa
√

t(µ−εn)
, where the sum is over occupied sub-

bands labeled by n and having band-bottoms located at
energy εn. Transport experiments estimate ℓ ≈ 300nm
(again without a superconducting layer)[26]. Since these
measurements were done at large source-drain bias, this
value reflects a sort of average over the lowest 3-4 sub-
bands, and should be taken as a rough guide.

Since only the outer-boundary of the wire is in contact
with the superconductor, there will in general be different
proximity induced gaps for different sub-bands. These
multi-band effects can be important for reproducing the
observed data for InSb wires. There, coherence peaks are
observed at energy, ∆0 ≈ 250µeV, but non-zero conduc-
tance occurs within the proximity induced “gap”. We
note that the experiment [11] shows large sub-gap tun-
neling conductance at B = 0. While the coherence peaks
of various sub-bands are Lorentz-broadened by coupling
to the leads, our sub-gap conductance is generally much
smaller than the data[27]. Below we focus on the mag-
netic field induced structures.

Tunneling Conductance - We use the iterative trans-
fer matrix method to construct the Green’s function for
the end of the wire, and compute the scattering matrix
from the Green’s function[9, 29]. Experimentally, the
wires are terminated by a large gap superconductor and
only Andreev reflection contributes to tunneling current:

I(V ) =
2e2

h

∫

dε (f(ε− eV )− f(ε)) tr|r̂eh(ε)|2 (3)

where r̂eh(ε)ij is the electron-hole part of the reflection
matrix from channel i to channel j in the lead, and f is
the Fermi distribution. Throughout, we take the lead to
have position and energy independent density of states
N0 = 1/(πvF ), and model the tunneling barrier by a
weak hopping link with hopping strength tLW.[30] The
lead-wire coupling is characterized by γLW = N0|tLW|2.
Proximity induced superconductivity is modeled by

coupling the boundary of each cross-section in the yz-
plane to an infinite superconductor, producing the self-
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FIG. 2. (Left) Zero-bias peak for a true Majorana state in
a long, clean wire, (Ny × Nz × Nx = 6 × 5 × 360, or about
twice as long as the wires in [11], and W = 0). Tight-binding
parameters: t = 36.5, UR = 2.7, γSC = 2, γLW = 0.3, and
µ = −175.2 corresponding to 5 occupied sub-bands. ∆0 is
superconducting gap for the highest occupied sub-band, and
is identified by the magnetic field for which the Majorana
appears.

energy[18, 31]:

ΣSC(ω+, y, z) = P̂edge
γSC (ω+ −∆Bτ3)

√

∆2
B − ω2

+

(4)

The projection P̂edge(y, z) = 1 if (y, z) is on the outer
edge of the wire (y ∈ {0, Ny} or z ∈ {0, Nz}) and is zero
otherwise. Here, ω+ = ω + iη where η positive and in-
finitesimal, τ3 is the z-Pauli matrix in the Nambu/Gorkov

particle-hole basis: Ψ(k) =
(

ck,↑ ck,↓ −c†−k,↓ c†
k,↑

)T

,

where ck,s destroys an electron with momentum k and
spin s ∈ {↑, ↓}. ∆B is the pairing gap of the adjacent
bulk superconductor γSC = πNB(0)|Γ|2 is the strength
of coupling between the wire and superconductor, NB(0)
is the density of states of the bulk superconductor near
the Fermi-surface, and Γ is the wire-superconductor tun-
neling amplitude.
Conditions for Majorana End-states – In a multi-
band wire, when µ0B > ∆0, one can think of each sub-
band as contributing a Majorana end-state which then
mix (see Appendix for further details[35]). For an even
number of occupied sub-bands, the Majoranas fuse into
ordinary fermions and are pushed away from zero-energy.
By contrast, for an odd number of occupied sub-bands a
single Majorana state always remains at zero-energy[15].
More quantitatively, to observe a Majorana, µ must fall
within specific intervals of size ≈ ±|µ0B − ∆0|. In [11]
ZBP’s are observed for µ0B >∼ ∆0 ≈ 250µeV. Indicat-
ing that Majorana end-states can exist only in narrow
regions of µ of size ≈ 250µeV, or ≈ 1

10 of the typical
sub-band spacing Esb ≈ 2.5meV.

Problems can arise for short wires[21, 32]. If the
wire is not sufficiently long, then the Majorana states
on each end of the wire can overlap, splitting into or-
dinary fermion states. For example, the InSb wires in
[11], had aspect ratios of Lx ≈ 20− 30Ly. Tight-binding
simulations of such a wire, with the parameters as in
Table I, show that Majorana end-states hybridize with

splitting of a few percent of ∆0 even for clean wires.
This issue is exacerbated by disorder, which is strongly
pair-breaking[18–20] and reduces the gap protecting Ma-
jorana end-states, allowing them to spread out and hy-
bridize more strongly. Indeed, realistic amounts of disor-
der corresponding to the estimated ℓ readily destroy the
quantized conductance peak from Majorana end-states.
Despite these issues, ZBP’s are still observed in InSb

wires. This suggests that ZBP might occur rather gen-
erally and may not necessarily tied to the presence of
zero-energy Majorana end-states. Below, we will show
that this is indeed the case, and that stable ZBP’s fre-
quently appear without Majorana states.
Tunneling Data- To start, we first consider an idealized
case, showing quantized Majorana peaks. Fig. 2 shows
conductance data for a long, perfectly clean wire of length
Nx = 360 in the center of the 3rd topological region (i.e.
with 5 occupied sub-bands including spin). This case has
been previously discussed[8–10], and we refer the reader
to the Appendix for further details[35]. We note that,
even for a clean wire, the observation of this quantized
peak requires wires 2-3 times longer than those used in
[11], and an order of magnitude larger than in [13].
Under realistic experimental conditions for semicon-

ducting wires, disorder is expected to play an important
role[18–20]. Disorder can produce zero-bias peaks by two
different mechanisms. The most important effect for our
purposes, is that disorder reduces the mini-gap to end-
states from other occupied sub-bands (see Appendix for
a more detailed discussion[35]). In the absence of disor-
der, these end-states are pushed up above induced gap
where they get absorbed by a continuum of extended
states. In a field, disorder reduces the mini-gap splitting,
causing these end-states to cluster near zero-energy. Our
simulations show that, that clusters emerging from mini-
gap states frequently remain localized near the end of
the wire, and at temperature larger than the mini-gap
splitting merge into a single ZBP.
In addition, the pair-breaking effects of disorder can

create localized sub-gap states bound to impurities[36,
37]. ZBPs due to impurity bound-states are distinct
fromt those arising from a small mini-gap: 1) impu-
rity bound-states are not localized to the wire-ends and
can occur throughout the wire; 2) these bound-states re-
quire special resonant disorder configurations to produce
near zero-energy states which happens comparitively in-
frequently, and 3) impurity bound-states tend to produce
only a single low-energy state, whereas the generic ZBPs
observed in our simulations consist of a cluster of multi-
ple states.
Fig. 3d. shows a color plot of zero-bias conductance for

tunneling not just into the end of the wire, but also into
various positions along the wire. The modest amount of
disorder included here (W = 22) corresponds to a long,
experimentally realistic mean-free path (ℓ ≈ 300nm), but
is nevertheless sufficient to destroy Majorana end-states.
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FIG. 3. (a) and (b) Conductance traces for a disordered multi-band wire as a function of µ0B for T = 0 (a) and T = 0.03∆0

(b). From bottom to top µ0B ranges from 0 to 3∆0 in steps of 0.2∆0 (curves are offset for clarity). µ = −172 corresponding
to 6 occupied sub-bands (including spin). ZBPs appear for µ0B ≈ ∆0 just as for a Majorana end-state, despite having an even
number of occupied sub-bands. Wire dimensions are Ny ×Nz ×Nx = 6×5×180. Tight-binding parameters: W = 12, t = 36.5,
UR = 2.7, γSC = 2.5, and γLW = 0.3. (c) Angle dependence of non-topological ZBP is similar to that of a true Majorana derived
ZBP (curves are offset for clarity). θ measures angle of B and the x-axis in the x-y plane. (d) ZBPs occur predominately at the
ends of the wire, as demonstrated in this plot showing the spatial profile of zero-bias conductance for tunneling into different
positions along the x-direction of a wire with µ0B = 2∆0, T = 0.03∆0 and µ varied between 5-6 sub-bands (µ3 = −175.2 is
the center of the third topological region). All other parameters are the same as (a) and (b) except W = 22, and Nx = 200.

Despite this, zero-bias peaks frequently appear. These
peaks are predominately localized at the wire ends, and
are typically stable over intervals of ∆µ ≈ ∆0 although
they are no-longer tied to the topological region |µ−µ3| <
√

(µ0B)2 −∆2
0. Fig. 3a. and b. show a typical example

of this non-topological ZBP developing as a function of
applied field. At T = 0 (a), one can resolve the ZBP into
multiple peaks near zero-energy, however at T = 0.03∆0

(b) the peaks are smeared into a single ZBP.

These peaks appear and disappear under very sim-
ilar magnetic field conditions as true Majorana states
would: 1) they appear only when µ0B >∼ ∆0 when pair-
breaking effects or disorder become important, 2) they
disappear when the field is rotated to point perpendicu-
lar to the wire (see Fig. 3)c. However, unlike ZBP’s tied
to Majorana states, these non-topological ZBP’s appear
commonly throughout the range of chemical potentials
between adjacent sets of sub-bands, meaning that they
would be more readily observed without strongly tuning
µ (see Fig. 3d).

Discussion – We have shown that, under experi-
mentally realistic conditions for semiconducting wires
with rather modest amounts of disorder, Majorana end-
states are destroyed and do not give rise to quantized
ZBPs. Nevertheless, at finite temperature, ZBPs of a
non-topological origin often appear due to the effects of
disorder, which lead to clusters of low-energy states lo-
calized near the wire end. These non-topological ZBPs
are typically stable with respect to variations of chemical
potential and magnetic field, and appear and disappear
under nearly identical conditions to those of true Majo-
rana peaks.

These results strike a note of caution for interpreting
recent experimental evidence of Majorana states in tun-

neling data[11–13]. In order to truly identify Majorana
end-states and rule out a non-topological origin of ob-
served ZBPs, it is crucial to push to lower temperatures,
and observe a quantized conductance peak. At suffi-
ciently low temperature non-topological ZBPs will reveal
themselves as clusters of states, and can be distinguished.
Spurious disorder induced peaks can also be ruled out by
more complicated measurements, such as the 4π Joseph-
son effect[32], which does not survive once Majoranas are
destroyed by disorder[33].
Our simulations indicate that to realize Majorana

states in semiconductors, one likely needs to produce
substantially longer and cleaner wires. These difficulties
suggest that it may be beneficial to seek materials with
larger spin-orbit coupling[34].
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work appeared by Bagrets and Altland, which finds a
disorder induced zero-bias peak in the disorder-averaged
density of states. These states occur in the bulk of the
wire, and are not tied to the ends, and are therefore dif-
ferent than the ZBPs reported here (but may be related
to impurity bound-states[36, 37]).
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