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We propose and analyze a physical system that naturally admits two-dimensional topological
nearly flat bands. Our approach utilizes an array of three-level dipoles (effective S = 1 spins)
driven by inhomogeneous electromagnetic fields. The dipolar interactions produce arbitrary uniform
background gauge fields for an effective collection of conserved hardcore bosons, namely, the dressed
spin-flips. These gauge fields result in topological band structures, whose bandgap can be larger
than the corresponding bandwidth. Exact diagonalization of the full interacting Hamiltonian at
half-filling reveals the existence of superfluid, crystalline, and supersolid phases. An experimental
realization using either ultra-cold polar molecules or spins in the solid state is considered.

PACS numbers: 73.43.Cd, 05.30.Jp, 37.10.Jk, 71.10.Fd

Single-particle flat bands, where kinetic energy is
quenched relative to the scale of interactions, are being
actively explored in the quest for novel strongly corre-
lated phases of matter [1–8]. Prompted by the analogy
to Landau levels, recent efforts have focused on topo-
logical flat bands (TFB) – lattice models in which the
band-structure also harbors a non-trivial Chern invari-
ant. Seminal recent work has highlighted that certain
classes of highly-engineered two-dimensional tight bind-
ing models can indeed exhibit topological nearly flat
bands [9–14]. However, the identification of a physical
system whose microscopics naturally admit TFB remains
an outstanding challenge.

In this Letter, we demonstrate the emergence of syn-
thetic gauge fields for an ensemble of interacting hard-
core bosons — the effective spin-flips of pinned, three-
level dipoles in a two-dimensional lattice. Underlying
these gauge fields are two key ingredients: spatially vary-
ing, elliptically-polarized external (microwave or optical)
fields break time-reversal symmetry, while anisotropic
dipolar interactions induce orientation-dependent phases
onto the hopping hardcore bosons. The combination of
these effects naturally produces nontrivial Chern num-
bers in the band structure and, when tuned appropri-
ately, results in the emergence of flat bands due to hop-
ping interference. While we observe a variety of non-
topological correlated many-body states here (ranging
conventional crystals to supersolids), interacting parti-
cles living in such a flat-band-kinetic environment are
also leading candidates for the realization of fractional
Chern insulators [1–8]. Our proposal describes a natural
framework in which ultra-cold molecules may be used to
probe the exotic features of such interacting topological
insulators.

Let us consider a square lattice composed of fixed,
three-state magnetic or electric dipoles placed in a static

FIG. 1: Schematic representation of a 2D dipolar droplet.
The grey droplet represents a 2D array of interacting tilted
dipoles. The dipoles are tilted by a static field in the ẑ direc-
tion, oriented at Θ0,Φ0 relative to the lattice basis {X,Y, Z}.
Rij is a vector connecting dipoles in the XY plane.

external field. Such an arrangement naturally arises
in experimental systems ranging from ultra-cold polar
molecules [16–22] and Rydberg atoms [23–25] to solid-
state spins [26, 27] and magnetic atoms [28]. As shown
in Fig. 1, the dipoles occupy the {X,Y } plane and couple
via dipole-dipole interactions,

Hdd =
1

2

∑
i 6=j

κ

R3
ij

[
di · dj − 3(di · R̂ij)(dj · R̂ij)

]
, (1)

where κ is 1/4πε0 for electric dipoles or µ0/4π for mag-
netic dipoles, and Rij connects the dipoles di and dj .
The three states of each dipole, which we label as |0〉,
| ± 1〉, are eigenvectors of the ẑ-component of (rotational
or spin) angular momentum. We assume that the | ± 1〉
states are degenerate while the |0〉 state is energetically
separated from them (Fig. 2a).

Each three-level dipole is driven by electromagnetic
fields of Rabi frequency Ω+ (right-circularly polarized),
Ω− (left-circularly polarized) and detuning ∆ as shown
schematically in Fig. 2a. With |Ω+|, |Ω−| � ∆, the ap-
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FIG. 2: a) Depicts the on-site level structure and the two-
photon driving scheme. These levels could, for example, be
adiabatically connected to the J = 1 manifold of a rigid rotor
as one turns on a DC electric field (see Eq. (6)). The resonance
frequency of the dressing lasers is detuned by ∆, while their
Rabi frequencies are Ω−(r) and Ω+(r). We consider |Ω±| �
∆ to operate in the far-detuned limit. In the case of polar
molecules, δ is the electric-field induced splitting within the
J = 1 manifold, which we require to be larger than the typical
dipolar interaction strength. b) Square lattice with a single
tilted dipole per vertex. We index columns of the lattice by
` and plaquettes by p`. For a particle traversing the edge of
a single plaquette, there are two contributions t` and t′` to
W (p`); each contribution occurs twice as represented by the
red and blue colored arrows. A simple periodic gradient of β
enables uniform π/N flux per plaquette.

proximate eigenstates (dressed states) are: |0〉, |B〉 =
α(| − 1〉 + β|1〉), and |D〉 = α∗(−β∗| − 1〉 + |1〉), where
α = Ω+/Ω̃, αβ = Ω−/Ω̃, and Ω̃ =

√
|Ω−|2 + |Ω+|2.

The energies of these dressed states are E0 = −Ω̃2/∆,
EB = ∆ + Ω̃2/∆, and ED = ∆ respectively. We let
d represent the typical size of the dipole moment and
R0 be the nearest-neighbor spacing; by ensuring that
κd2/R3

0 � Ω̃2/∆ and so long as we initially avoid pop-
ulating |D〉, the system remains within the subspace lo-
cally spanned by |0〉 and |B〉 (note that one could also
choose to work in the subspace spanned by |0〉 and |D〉).

Thus, it is natural to view |B〉 as representing an ef-
fective hardcore bosonic excitation (spin-flip), while |0〉
represents the absence of such an excitation. Recasting
this system in terms of operators a†i = |B〉〈0|i (ni = a†iai)
yields a 2D model of conserved hardcore lattice bosons,

HB = −
∑
ij

tija
†
iaj +

1

2

∑
i 6=j

Vijninj , (2)

where we define the hopping tij = −〈Bi0j |Hdd|0iBj〉,
the on-site potential tii =

∑
j 6=i(〈0i0j |Hdd|0i0j〉 −

〈Bi0j |Hdd|Bi0j〉), and the interaction Vij =
〈BiBj |Hdd|BiBj〉+ 〈0i0j |Hdd|0i0j〉 − 〈Bi0j |Hdd|Bi0j〉 −
〈0iBj |Hdd|0iBj〉. The conservation of total boson

number, Ni =
∑
i a
†
iai, arises from the condition

κd2/R3
0 � ∆, which ensures that particle-number non-

conserving terms of Hdd are energetically disallowed.

The functional form of the effective hardcore bosonic
Hamiltonian Eq. (2) arises for any system of pinned,

three-level dipoles. The parameters in HB are given by
(κ = 1, i 6= j):

tij =
d201
R3

[
χ†i (q0 + Re[q2]σx + Im[q2]σy)χj

]
, (3)

tii = −
∑
j 6=i

2
q0
R3

(d0dBi − (d0)2),

Vij = 2
q0
R3

[
dBi d

B
j − d0dBi − d0dBj + (d0)2

]
,

where d0 (dB) is the permanent ẑ-dipole moment of the
|0〉 (|B〉) state, d01 is the transition dipole moment from
|1〉 to |0〉 [29], χi = αi(1, βi)

T is the normalized drive-
spinor on site i, q0 = 1

2 (1 − 3 cos2(Φ − Φ0) sin2(Θ0)),
q2 = − 3

2 [cos(Φ − Φ0) cos Θ0 − i sin(Φ − Φ0)]2, ~σ are the
Pauli matrices, and (R,Φ) is the separation Rij in po-
lar coordinates (Fig. 1). We have suppressed the explicit
ij dependence of R, Φ, q0, and q2. While the form of
dBi , and hence of interactions, depends on the underly-
ing implementation, the single-particle band structures
that can be achieved via driving are independent of such
details [30].

Let us first explore these topological single-particle
bands and illustrate the interplay between the driven
breaking of time-reversal and the anisotropic dipolar in-
teraction. As a simple example, we demonstrate how to
achieve a synthetic background gauge field with uniform
flux π/N per plaquette on a square lattice (assuming only
nearest-neighbor hops). We choose the “magic” electric
field tilt, (Θ0,Φ0) = (sin−1(

√
2/3), π/4), where q0 = 0

along X̂ and Ŷ . This choice allows us to isolate the terms
of Hdd that harbor intrinsic phases, namely, those associ-
ated with d+i d

+
j and d−i d

−
j , where d± = ∓(dx ± idy)/

√
2

[19, 29]. Moreover, it simplifies the form of nearest-
neighbor hopping to

tX̂ij =
d201
R3

0

χ†i

[
1

2
σx −

√
3

2
σy

]
χj ,

tŶij =
d201
R3

0

χ†i

[
1

2
σx +

√
3

2
σy

]
χj . (4)

The microscopic breaking of time-reversal arises from
the asymmetry between left- and right- circularly polar-
ized radiation and is captured by the ratio β = Ω−/Ω+.
While each Rabi frequency is characterized by both an
amplitude (intensity) and a phase, initially, we will con-
sider only varying the amplitude of β; phase variations
will be considered in more detail in the discussion of
many-body states. Physically, it is β which defines each
hardcore boson |B〉, by setting the relative admixture be-
tween the |1〉 and |−1〉 states. Keeping β real, let us now
consider varying the intensities of the drive fields along
the Φ = π/4 direction in a periodic fashion.

For each plaquette, we define the Wilson loop, W (p) =∏
∂p tij , which is identical along columns indexed by `
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(Fig. 2b). The flux in a plaquette is then the phase of this
Wilson loop, Ψ` = arg[W (p`)] = arg[t2` t

′2
` ], where t` are t′`

are the hops depicted in Fig. 2b. Taking θ` = arg(t`) and
noting that θ′` = arg(t′`) = −θ`+1 yields the phase of the
Wilson loop as Ψ` = 2θ` − 2θ`+1. To achieve a uniform
π/N flux per plaquette, we can take θ`+1 = η − ` π

2N ,
where η ∈ R is a constant to be specified. From the
definition of θ`, one finds a simple recursion relation for
β,

β`+1

β`
=

sin(π3 − η + ` π
2N )

sin(π3 + η − ` π
2N )

, (5)

with maximum periodicity 4N [47]. Starting from any
initial β1, Eq. (5) yields a recursively generated drive pat-
tern which achieves the desired uniform π/N background
gauge field.

While the uniform flux per plaquette is reminiscent of
the square lattice Hofstadter problem [31], we emphasize
that the physics of these driven dipoles is significantly
richer, owing to the additional modulation of tij . The
background flux field arises, in part, from the natural
phases associated with the dipolar interaction. This en-
sures that (as in [32]) the number of flux quanta per
plaquette is not limited by the magnitude of laser inten-
sities, contrasting with the majority of previous synthetic
gauge field proposals, where the scaling to high artificial
fluxes is extremely difficult [34–38].

To illustrate the symmetry breaking required for the
generation of gapped Chern bands, we now turn to a de-
tailed study of HB restricted to a two-site unit cell (re-
maining at the “magic” tilt), as depicted in Fig. 3a. This
restriction has the virtue of being analytically tractable
and allows us to identify the anti-unitary symmetries as-
sociated with the Dirac points [39, 40]. Let us consider
β = β1, β2 on the two sites of the unit cell and include
all terms up to next-next-nearest neighbor. The topol-
ogy of the bands depends on the relative ratio of β1 and
β2. For β1 ∈ R, the phase diagram in Fig. 3b illustrates
the Chern invariant of the bottom band as a function of
the complex β2-plane. There exist two circles of gapless
(Dirac) points protected by distinct anti-unitary symme-
tries.

Implementation—An experimental realization of our
proposal can be envisioned with either electric (e.g. polar
molecules) or magnetic (e.g. solid-state spins) dipoles. As
previously mentioned, the form of dBi depends on this
choice, since the permanent dipole moment of the | ±
1〉 states have either the same or opposite signs. We
emphasize that the long intrinsic lifetimes of such systems
make them ideal for the consideration of driven, non-
equilibrium phenomena [41, 42].

To be specific, we now focus on diatomic polar
molecules (trapped in a deep optical lattice) in their
electronic and vibrational ground state. We utilize mi-
crowave fields to dress the molecules and partially polar-
ize them with an applied DC electric field along ẑ (Fig. 1);

FIG. 3: a) Schematic representation of the two-site unit cell
lattice with β = β1, β2. The dotted box outlines a single unit
cell. There is a flux Ψ,−Ψ which alternates in neighboring
square plaquettes. The direct lattice vectors g1 and g2 are
depicted as purple arrows. While all hops are present with
amplitude decaying as 1/R3, only nearest-neighbor (solid)
and next-nearest-neighbor (dashed) hops are shown. b) The
topology of bulk bands as a function of complex β2 for β1 ∈ R.
The Chern number is c = 1

4π

∫
dkxdky(∂kx d̂×∂ky d̂) · d̂, where

H(k) = ~d(k) · ~σ + f(k).

ignoring electronic and nuclear spins, this yields a single-
molecule Hamiltonian,

Hm = BJ2 − dzE +HD, (6)

where B is the rotational constant, J is the rotational
angular momentum operator, dz is the ẑ component of
the dipole operator, E is the magnitude of the applied
DC field, and HD characterizes the dressing of the J = 1
rotational states depicted in Fig. 2a [19, 41].

In the absence of applied fields, each molecule pos-
sesses rigid rotor eigenstates |J,M〉. The applied electric
field E mixes eigenstates with the same M , splitting the
degeneracy within each J manifold and inducing a finite
permanent dipole moment for each perturbed rotational
state. We choose from among these states to form the
effective three-level dipole; an example of one possibility
for |0〉, |±1〉 is shown in Fig. 2a. Since these |±1〉 states
have an identical induced dipole moment d1, one finds
that dBi = d1, and hence,

Vij = 2
q0
R3

(d0 − d1)2. (7)

The relative strength of the interaction Vij/tij is thus set
by (d0−d1)2/d201; this is a highly tunable parameter and
can easily reach ∼ 100 for certain choices of rotational
states and DC electric field strengths [19].

The main challenge in an experimental realization of
our proposal lies in the spatial modulation of the drive
fields at lattice scale. For spins in the solid-state and
on-chip polar molecule experiments, one might envision
using near-field techniques. A more straightforward ap-
proach, suitable for molecules, is to utilize pairs of op-
tical Raman beams (see supplementary information for
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FIG. 4: Phase Transitions in topological flat bands of 2D
driven dipoles. a) Band structure for (Θ0,Φ0) = (0.46, 0.42),
β1 = 3.6e2.69i, and β2 = 5.8e5.63i. We have verified that
the Chern number does not change upon adding in dipo-
lar interactions up to order 1/27R0. Significantly flatter
band structures with flatness ratio > 10 can be obtained for
slightly generalized configurations involving a tripod level-
structure and optical super-lattice [33]. b) Structure factor
S(R, 0) = 〈n(R)n(0)〉 for filling ν = 1/2 in KMS [47] and c)
SSS regime; size of circles indicates weight. d) Spectral gap
density plot as a function of varying MW drive for parameters:
(Θ0,Φ0) = (0.66, π/4), β1 = −2.82eiφ1 , β2 = −4.84e−iφ2 and
(d0 − d1)2/d201 ≈ 2.8. The transition from the SF, which
has a unique finite-size ground state, to the degenerate SSS
shows as a collapse of this gap. e) Spectral flow in the ground
state momentum sector of the SSS under twisting of the bo-
son boundary condition in the ĝ1 and f) ĝ2 directions. For
the Ns = 24 lattice with 6 bosons, momentum sectors return
to themselves after 2π in θ1 and after 4π in θ2.

details) [33]. For example, the so-called lin⊥lin configu-
ration [43] automatically ensures that Ω̃ and ∆ are identi-
cal on all sites and moreover, generically produces gapped
topological band-structures.

Many-body phases—To illustrate the power of the
present approach, we briefly explore two examples of cor-
related ground state phases which arise in the Hamilto-
nian Eq. (2). As HB conserves boson number N , we may
consider its many-body physics at finite filling fractions
ν (particle number per unit cell). Let us work with a
two-site unit cell and truncate the dipolar interactions
at next-next-nearest-neighbor order. Bosons residing in
a strongly dispersing band structure generically form su-
perfluids in order to minimize their kinetic energy. In-
teraction dominated phases arise when the single-particle
bands disperse less than the scale of interactions. Numer-
ical optimization of the flatness ratio (bandgap/lowest
bandwidth) over the six-dimensional parameter space of
microwave driving and tilt angle reveals approximately
flat Chern bands in several regions of phase space. The

flatness of these bands (Fig. 4a) derives from interfer-
ence between the hopping in different directions and, mi-
croscopically, owes to an interplay between the natural
anisotropy associated with dipolar interactions and the
spatial variation of the drive fields.

As a first example, we consider the band structure
depicted in Fig. 4a, where the lower/upper band carry
Chern index, c = ∓1 (parameters in caption). Ex-
act diagonalization at filling fraction ν = 1/2 and rel-
ative interaction strength (d0 − d1)2/d201 ≈ 6 reveals a
knight’s move solid (KMS) phase with a 4-fold degen-
erate, gapped, ground state. The real-space structure
factor S(R, 0) = 〈n(R)n(0)〉 (at total number of sites,
Ns = 32) in Fig. 4b illustrates the knight’s move rela-
tionship of the bosons in the ground state. Twisting the
boundary condition of the KMS in the ĝ1, ĝ2 directions
(Fig. 4b) does not significantly affect the ground state
energy, as expected of an insulator [47].

Many other commensurate phases arise as as we tune
the driving fields to other regions of phase space. Fig-
ure 4d shows a phase diagram containing both superfluid
(SF) and striped supersolid (SSS) phases. We can charac-
terize the SSS arising at φ1 = φ2 = 0.1 as follows: First,
diagonalization reveals the existence of three degenerate
ground states in the sectors: k2 = 0, k1 = 0, 2π/3, 4π/3.
Consistent with striped ordering, the structure factor
shows density stripes in the ĝ2 direction (Fig. 4c). How-
ever, each of these stripes has incommensurate boson
number, suggesting delocalization along the stripes. To
wit, for Ns = 24, the 6 hardcore bosons are distributed
evenly along two stripes, each containing 4 sites. Strong
phase coherence along the stripes shows up in the sensi-
tivity to twists in the ĝ2 direction, while transverse twists
produce essentially no dispersion, as shown in Fig. 4e,f.

Conclusion—Our proposal opens the door to a num-
ber of intriguing directions. In particular, the adiabatic
preparation and detection of single-excitation states may
provide an elegant approach to probing chiral dynam-
ics, edge modes, and the Chern index [33, 44, 45]. More
generally, dynamical preparation, manipulation and de-
tection of many-body states in such driven topological
systems remains an exciting open question [46]. Finally,
the large available parameter space holds the promise of
more exotic phases, such as fractional Chern insulators
[33]. Realizing such phases in an effective spin system
may provide a deeper understanding of the stability of
such states in the context of generalized long-range dipo-
lar interactions.
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