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We show that the exact exchange-correlation potential of time-dependent density-functional the-
ory displays dynamical step structures that have a spatially non-local and time non-local dependence
on the density. Using one-dimensional two-electron model systems, we illustrate these steps for a
range of non-equilibrium dynamical situations relevant for modeling of photo-chemical/physical
processes: field-free evolution of a non-stationary state, resonant local excitation, resonant complete
charge-transfer, and evolution under an arbitrary field. Lack of these steps in usual approximations
yield inaccurate dynamics, for example predicting faster dynamics and incomplete charge transfer.

The vast majority of applications of time-dependent
density functional theory (TDDFT) today deal with cal-
culating the linear electronic spectra and response of
molecules and solids, and provide an unprecedented
balance between accuracy and efficiency [1, 2]. TDDFT
also applies to any real-time electron dynamics, not nec-
essarily starting in a ground-state, and possibly sub-
ject to strong or weak time-dependent fields. Time-
resolved dynamics are particularly important and top-
ical for TDDFT for two reasons. First, there is really
no alternative practical method for accurately describ-
ing correlated electron dynamics, and second, many
fascinating new phenomena and technological applica-
tions lie in this realm. These include: attosecond con-
trol of electron dynamics [3], photo-induced coupled
electron-ion dynamics (for example in describing light-
harvesting and artificial photosyntheses), and photo-
chemical/physical processes [4, 5] generally. TDDFT
in theory yields all observables exactly, solely in terms
of the time-dependent density, however in practice, ap-
proximations must be made both for the observable
as a functional of the density, and for the exchange-
correlation (xc) functional. Thus the question arises as
to whether the approximate functionals that have been
successful for excitations predict well the dynamics in
the more general time-dependent context. In particu-
lar, the exact xc contribution to the Kohn-Sham (KS)
potential at time t functionally depends on the his-
tory of the density n(r, t′ < t), the initial interacting
many-body state Ψ0, and the choice of the initial KS
state Φ0: vXC[n; Ψ0,Φ0](r, t). However, almost all cal-
culations today use an adiabatic approximation, vA

XC
=

vg.s.XC [n(t)], that inputs the instantaneous density into a
ground-state xc functional [6, 7], completely neglecting
both the history- and initial-state-dependence. Func-
tionals that have explicit dependence on the KS orbitals
do contain some memory-dependence [8]. Further, the
ground-state functional vg.s.XC must be approximated; hy-
brid functionals are most popular for molecular spec-
tra, while the spatially local LDA and semi-local GGA’s
are most popular for solids (see Ref. [2] and references

therein).
Although understanding when such approximations

are expected to work well or fail has advanced signif-
icantly in the linear response regime [2], considerably
less is known about the performance of approximate
TDDFT for general non-linear dynamics [9–11]. Part of
the reason for this is due to the lack of exact, or highly
accurate, results to compare with. Moreover, even in
the case where an accurate calculation is available, it is
very complicated to extract the exact xc potential (see
Refs. [12, 13] for significant progress). It is critical for
the reliability of TDDFT for describing fundamental dy-
namical processes in the applications mentioned earlier,
to first test available xc approximations on systems for
which the exact xc potential can be extracted. One such
case is that of two-electrons in a spin-singlet, chosen to
start in a KS single-Slater determinant. We show that,
in this case, the usual adiabatic and semi-local approxi-
mations typically fail to capture a critical and fundamen-
tal structure in the exact correlation potential: a time-
dependent step, that has a spatially ultranonlocal and
non-adiabatic dependence on the density. This feature
is missing in all available TDDFT approximations to-
day. Even the exact adiabatic functional misses it. This
leads to erroneous dynamics, e.g. faster time scales are
observed in the adiabatic approximations for examples
where the step opposes the density evolution.
For two-electrons in a spin-singlet we choose, as is

usually done, the initial KS state as a doubly-occupied
spatial orbital, φ(r, t). Then the exact KS potential for
a given density evolution can be found easily [14]. In
one-dimension (1D), we have

vS(x, t) = − (∂xn(x, t))
2

8n2(x, t)
+
∂2
xn(x, t)

4n(x, t)
−u2(x, t)

2
−
∫ x ∂u(x′, t)

∂t
dx′

(1)
where u(x, t) = j(x, t)/n(x, t) is the local “veloc-
ity”, n(x, t) is the one-body density, and j(x, t) is the
current-density. We numerically solve the exact time-
dependent Schrödinger equation for the two-electron
interacting wavefunction, obtain n(x, t) and j(x, t), and



insert them into Eq. 1. The exchange-potential in this
case is simply vX(x, t) = −vH(x, t)/2, with vH(x, t) =
∫

w(x′, x)n(x′, t)dx′, in terms of the two-particle inter-
action w(x′, x). Therefore, we can directly extract the
correlation potential using

vC(x, t) = vS(x, t)− vext(x, t)− vH(x, t)/2 , (2)

where vext(x, t) is the external potential applied to the
system. The two electrons in all our examples inter-
act via the soft-Coulomb interaction [15], w(x′, x) =

1/
√

(x′ − x)2 + 1. We use atomic units throughout.
We start the analysis with some purely (or largely)

two-state systems, in which the exact interacting wave-
function, |Ψ(t)〉, can be expanded in a basis consisting
of the ground-state, |Ψg(t)〉, and the first excited singlet
state, |Ψe(t)〉:

|Ψ(t)〉 = ag(t)|Ψg〉+ ae(t)|Ψe〉 (3)

where ag(t) and ae(t) are coefficients given by:

i∂t

(

ag(t)
ae(t)

)

=

(

Eg − dggE(t) −degE(t)
−degE(t) Ee − deeE(t)

)(

ag(t)
ae(t)

)

(4)
where Eg , Ee are the energy eigenvalues of the two
states, dab =

∫

Ψ∗

a(x1, x2)(x1+x2)Ψb(x1, x2)dx1dx2 is the
transition dipole moment and E(t) = A cos(ωt) is an ap-
plied electric field of strength A and frequency ω. In the
weak amplitude limit, with ω ≫ |degA| and ω close to
the resonant frequency, this reduces to the textbook Rabi
problem. By solving Eq. 4 we can easily construct the
current and density at any time, their time-derivatives,
and hence all pieces entering Eq. 1.
In our first example, we consider a “1D He atom”,

where vext = −2/
√
x2 + 1, subject to a weak electric

field of strength A = 0.00667au and frequency ω =
0.533au, resonantwith the first singlet excitation [16, 17].
The system oscillates from one state to the other over
a Rabi cycle of period TR = 2π/(|deg|A). Figure 1
shows snapshots of vC(x, t) over one Rabi cycle, while
Fig. 2 shows snapshots over one optical period centered
around TR/4. (Note that the system is not exactly peri-
odic over TR as the optical frequency and the Rabi fre-
quency are not commensurate).
The most salient feature of the correlation potential is

the presence of time-dependent steps, that oscillate on
the time-scale of the optical field. These steps arise from
the fourth term of Eq. 1: whenever there is a net “acceler-
ation”, ∂tu(x, t), through the system, the spatial-integral
is finite, resulting in a potential rising from one end of
the system to the other. The correlation potential thus
has a spatially ultranonlocal dependence on the density,
as it changes far from the system.
Further, the time-dependence of the steps is non-

adiabatic, meaning that the instantaneous density is
not enough to determine the correlation potential func-
tional. One is tempted to point to the time-derivatives in
the fourth term in Eq. 1 as evidence for the non-adiabatic
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FIG. 1: (color online). Snapshots of the exact correlation po-
tential (solid black), density (blue dotted), and exact-adiabatic
(red dashed) over one Rabi cycle for the 1D He atom. At
TR/2 the density of the first excited state is essentially exactly
reached. In all graphs, the correlation potentials are plotted up
to an irrelevant time-dependent constant.
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FIG. 2: (color online) Snapshots of the correlation potential
(left), and corresponding density (right) for the 1D He atom,
at times indicated on the right.

dependence, however cautionwould be needed for such
an argument as time non-locality in vS is not the same as
time non-locality in vC [2]: the fourth term, may be writ-
ten as vext plus other terms, and although vext has typ-
ically strongly non-adiabatic dependence, this is irrele-
vant because it is never approximated as a functional
in practice [2, 18], rather it is taken from the problem
at hand. Only the xc potential must be approximated,
and its functional-dependence cannot be deduced di-
rectly from Eq. (1). Instead, to unambiguously show
the non-adiabatic dependence of the step, we plot the
“adiabatically-exact” correlation potential in Fig. 1. This
is defined by the exact correlation potential for which
both the interacting and KS wavefunctions are ground-
state wavefunctions with density equal to the instanta-
neous one i.e. vadia−ex

C
[n] = vadia

S
[n]− vadiaext [n]− vH[n]−

vX[n] [19], where vadiaext [n] is the external potential for two
interacting electrons whose ground-state has density n,
and vadia

S
[n] is the exact ground-state KS potential for

this density (given by the first two terms in Eq.(1). We
find vadiaext [n] using similar techniques to Ref. 19 (see also
Ref. 20 ). Fig. 1 shows that vadia−ex

C
[n] does not capture

the dynamical step structure.
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Before turning to our next example, we verify that the
two-state approximation is accurate enough for our pur-
poses. One aspect of the potentials we find is actually
an artifact of the two-state approximation: the corre-
lation potential asymptotically has a slope that exactly
cancels the externally applied electric field. This is be-
cause the two-state approximation cannot correctly de-
scribe polarization arising fromoccupying many excited
states in time. The KS potential obtained from the two-
state approximation is flat asymptotically, as it cannot
describe states that are polarized asymptotically. The
field is so weak that this effect is hardly noticeable in
Figs. 1 and 2, but to check that our conclusions regard-
ing the dynamics step structure are unaffected by the
two-level approximation, we computed the KS poten-
tial using the density, current, and their time-derivatives
from the numerically-exact wavefunction, found using
octopus [21–23]. Apart from some extra structure in
the tail region (small peaks and steps as we move away
from the atom), and the small linear field-counteracting
term, the correlation potential agrees with that from the
two-state model.
Dynamical step features have arisen in TDDFT in ear-

lier studies; Refs. [19, 24] showed they appear in ion-
ization processes, and linked them to a time-dependent
derivative discontinuity, related to fractional charges.
In time-resolved transport, step structures have been
shown to be essential for describing Coulomb-blockade
phenomena [25], again related to the discontinuity. In
the response regime, field-counteracting steps develop
across long-range molecules [26]. In open-systems-
TDDFT, Ref. [27] shows steps arise when using a closed
KS system to model an open interacting one. The linear
response xc kernel for charge-transfer excitations dis-
plays frequency-dependent steps [28]. Here we argue
that the dynamical step structures we find are generic:
they typically arise in dynamics, and moreover, unlike
most of the above cases [19, 24–26], cannot be captured
by an adiabatic approximation. They appear with no
need for ionization nor subsystems of fractional charge,
nor any applied field (see next example), unlike in
Refs. [19, 24–26]. In this sense our results are more akin
to Ref. [12], which studies the physically very different
situation when an electron freely propagates through a
wire. The large range of the examples we present sug-
gests that such non-adiabatic and non-local steps gener-
ically arise in electron dynamics.
Our second example accentuates the fact that dynam-

ical step structures need neither ionization nor an exter-
nal field to appear. We begin in an equal linear superpo-
sition of the ground and first-excited state of the 1D He
and let it evolve freely, so that

|Ψ(t)〉 =
(

e−iEgt|Ψg〉+ e−iEet|Ψe〉
)

/
√
2 . (5)

It oscillates back and forth between the two states with
frequency ω0 = Ee − Eg . The two-state approximation
is exact at all times. Again, we see large steps in the
correlation potential, as shown in Fig. 3. To support
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FIG. 3: (color online) The exact correlation potential (black
solid) at times indicated, for the two-state example (Eq. 5).
Also shown are the local acceleration (red dotted),

∫
x
∂tu−vext

(purple dashed), and the adiabatically-exact correlation poten-
tial (blue dash-dot).

the discussion and provide a microscopic insight behind
this phenomenon, we also plot in Fig. 3 the acceleration,
a(x, t) = ∂tu(x, t), and its spatial integral with the ex-
ternal potential subtracted out. The position and mag-
nitude of the step at each time is heavily dependent on
this term. Peaks in the acceleration, when integrated,
become local steps in the potential and the asymptotic
value of the step in vC(x, t) is given by the total step in
the spatial integral of a(x, t). Although local step-like
features may be cancelled out by the other terms in Eq.
(1), the net magnitude of the step is determined from the
asymptotic values of this integral.
Note that we have the freedom to choose the initial

state of the KS system as long as it has the same density
and first derivative in time of the exact density [29], and
the shape of the exact correlation potential depends on
this choice [20]. We used a doubly occupied orbital in
the previous example. A different choice, with a config-
urationmore similar to that of the interacting initial state
could well yield a more gentle correlation potential [20],
with less dramatic step structure.
The generality of the dynamical step feature is further

supported by considering different resonant excitations.
Consider a double-well as a model of a molecule:

vext(x, t) = − 2
√

(x+ 3.5)2 + 1.0
− 1

cosh2(x− 3.5)
−E(t)x

(6)
with E(t) = 0.006 cos(0.112t). Here the ground-state
has two electrons in the left well, and Ψe is a charge-
transfer excited state, with one electron in each well, at
a frequency of 0.112au. Using the ground-state and Ψe

in Eq. (3), we solve for the occupations using Eq. (4);
we again checked the two-state result against the ex-
act numerical solution using octopus. The system be-
haves as the Rabi problem with non-zero ground-state
dipole moment [30, 31]. Fig. 4 shows the correlation po-
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FIG. 4: (color online) The correlation potential (left) and den-
sity and external potential (right) shown at snapshots of time
TR/8± fractions of the optical period, Topt = 2π/0.112au, for
the two-well potential model Eq. (6) under resonant charge-
transfer excitation conditions.

tential for several times within an optical cycle around
TR/8. Again dynamical steps oscillating on the opti-
cal frequency time scale emerge. The situation is more
complicated as a step related to the delocalization of the
density during the charge-transfer process slowly de-
velops (on the time-scale of TR/2) [32]. The dynami-
cal step can then increase, decrease, or even reverse this
charge-transfer step. Approximations unable to develop
steps lead to incomplete charge-transfer. This, along
with other details of time resolved charge-transfer, is in-
vestigated in more detail in Ref. [32]. For present pur-
poses, it is sufficient to note that dynamical steps are
again present to capture the exact dynamics.

Finally, we explicitly demonstrate that the non-local
non-adiabatic step feature is a generic aspect of the cor-
relation potential in the following way. We subject the
1D He atom to a field that is chosen somewhat arbitrar-
ily: it is relatively strong and linearly switched on over
two optical cycles, with an off-resonant frequency. In
Fig. 5, we show the exact correlation potential at four
times. The time-dependent step in the exact vC is once
again evident, and again the adiabatically-exact approx-
imation fails to capture it.

In summary, dynamical steps in the correlation poten-
tial are a generic feature of electron dynamics. The step
features arise from part of the fourth term of Eq. (1),
which suggests that any time there is a net accelera-
tion across the system, there is a step that has a very
non-local spatial dependence on the density, and is non-
adiabatic. This represents a type of time-dependent
screening, where the electron-electron interaction hin-
ders electron movement to certain regions. Although
two-electron systems were studied here, we expect that,
except for special cases (such as field driven harmonic
potential motion), steps are a more general feature of
electron dynamics, as supported by the recent Ref. [12],
and are a topic for future investigation.

The lack of the step in approximations leads to in-
correct dynamics. Faster time scales in adiabatic ap-
proximations were found for the field-free dynamics of
a linear superposition state, where the direction of the
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FIG. 5: (color online). The exact correlation potentials (solid,
black) during propagation under strong non-resonant field
(A =

1

2
√

2

0.3

4π
, ω = 0.3). This field induces the population of

many empty states (over fifty), therefore we are well beyond
the two-level Rabi physics. Also shown are the adiabatically-
exact correlation potentials (dashed red), and the density (dot-
ted blue, scale on the right).

step tended to oppose the density’s motion. The exact
dipole and adiabatic exact-exchange (AEXX) dipole for
this case are shown in Fig. 6. We computed the dynam-
ics of the local excitation of Figs 1 and 2 using AEXX,
adiabatic LDA, and adiabatic self-interaction-corrected
LDA. The dipole oscillation timescale in all cases was
faster than in the true case. These approximations yet
provide good linear response spectra [17]. The steps are
likely a feature of non-linear dynamics, intimately con-
nected with having appreciable population in excited
states; this will be investigated closely in the future.

Note that the xc electric field, defined as the gradi-
ent of the xc potential, has a more local character than
the potential. This suggests that considering functional
approximations to this field (including hydrodynami-
cal ones [34]), or, more generally, to an xc vector po-
tential [12, 33], may point to an easier path to develop
approximations containing step features. Including ex-
plicit orbital-dependence suggests another fruitful av-
enue to explore, as orbitals themselves have non-local
and non-adiabatic dependence on the density [8, 35].

As applications of TDDFT continue to expand, it is
crucial to further study the impact of the missing steps
in the approximations on their predictions. When start-
ing in the ground-state, the exact adiabatic potential
may follow well the exact dynamics at short times, but
as soon as there is an appreciable change in the occu-
pation of an excited state, the exact soution develops
the dynamical step, entirely missing in the adiabatic
one. This result is general and applies to all available
functionals. It raises an important issue when applying
TDDFT to fundamental photo-induced processes (e.g.
photovoltaics, artificial photosynthesis, photoactivated
chemistry, photophysics, etc): all these involve a signif-
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icant change of state population. Clearly population of
many-body states due to the external field is not a lin-
ear process and requires functionals able to cope with
the generic features of the dynamical step that we have

unveiled in the present work.
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