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Abstract

A hierarchical equations of motion (HEOM) based numerical approach is developed for accurate

and efficient evaluation of dynamical observables of strongly correlated quantum impurity systems.

This approach is capable of describing quantitatively Kondo resonance and Fermi liquid charac-

teristics, achieving the accuracy of latest high-level numerical renormalization group approach, as

demonstrated on single-impurity Anderson model systems. Its application to a two-impurity An-

derson model results in differential conductance versus external bias, which correctly reproduces

the continuous transition from Kondo states of individual impurity to singlet spin-states formed

between two impurities. The outstanding performance on characterizing both equilibrium and

nonequilibrium properties of quantum impurity systems makes the HEOM approach potentially

useful for addressing strongly correlated lattice systems in the framework of dynamical mean field

theory.
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Quantum impurity systems cover a broad range of important physical systems where

strong electron-electron (e-e) interactions among a few localized impurities affect crucially

the system properties. Besides the e-e interactions, the impurities are coupled to the itiner-

ant electrons in surrounding bulk materials, which serve as the electron reservoir and ther-

mal bath. Moreover, some extensive strongly correlated systems can be treated as quantum

impurity systems. For instance, the celebrated Hubbard model can be mapped onto an An-

derson impurity system via a self-consistent dynamical mean-field theory [1]. The strong e-e

interactions give rise to a variety of intriguing phenomena of prominent many-body nature,

such as Kondo effects, Mott metal-insulator transition, and high-temperature superconduc-

tivity. Examples of localized impurities are the d- or f -electrons of transition metal atoms

and electrons trapped in quantum dots.

Accurate characterization of quantum impurity systems is the key to the understanding

of the mechanisms and effects of strong electron correlations. This has remained a very

challenging task, especially for the quantitative evaluation of dynamical quantities directly

related to experimental measurements, such as the projected density of states and spectral

function of the localized impurities. A vast amount of theoretical efforts have been devoted

to achieving this goal, including the quantum Monte Carlo (QMC) approach [2, 3], den-

sity matrix renormalization group method [4, 5], numerical renormalization group (NRG)

method [6, 7], many-body perturbation theory [8], effective/quasi single-particle approaches

[9, 10], etc. Despite their success in elucidating some fundamental features of electron cor-

relations, the practicality of existing approaches has been limited within a few basic models

[11–13]. The reason is mainly twofold: (i) the applicability of involving techniques relies

critically on the system configuration, and (ii) the complexity of numerical algorithms in-

creases dramatically with the number of impurities. Consequently, generalization of existing

approaches [2–7] to more complex models is often difficult. Therefore, an accurate and uni-

versal approach capable of addressing strong correlation effects in general quantum impurity

systems is highly desirable.

In this Letter we propose a general approach based on a hierarchical equations of motion

(HEOM) formalism [14] to characterize quantum impurity systems from the perspective of

open dissipative dynamics. The localized impurities constitute the open system of primary

interest, while the surrounding reservoirs of itinerant electrons are treated as environment.

The total Hamiltonian consists of the interacting impurities (Hsys), the noninteracting elec-
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tron reservoirs (Hres), and their couplings Hsys-res =
∑

αµk(tαµk â
†
µd̂αk+H.c.). Here, â†µ and âµ

denote the creation and annihilation operators for impurity state |µ〉 (including spin, space,

etc.), while d̂†αk and d̂αk are those for the α-reservoir state |k〉 of energy ǫαk. The influence

of electron reservoirs on the impurities is taken into account through the hybridization func-

tions, ∆µν(ω) ≡
∑

α∆αµν(ω) = π
∑

αk tαµkt
∗
ανk δ(ω−ǫαk), in the absence of applied chemical

potentials.

The HEOM that governs the dynamics of open system assumes the form of [14]:

ρ̇
(n)
j1···jn

=−
(
iL+

n∑

r=1

γjr

)
ρ
(n)
j1···jn

− i
∑

j

Aj̄ ρ
(n+1)
j1···jnj

− i

n∑

r=1

(−)n−r Cjr ρ
(n−1)
j1···jr−1jr+1···jn

. (1)

The basic variables are the reduced system density operator ρ(0)(t) ≡ trres ρtotal(t) and auxil-

iary density operators, {ρ
(n)
j1···jn

(t);n = 1, · · · , L}, with L denoting the terminal or truncated

tier level. The Liouvillian of impurities, L · ≡ ~
−1[Hsys, · ], may contain both e-e interac-

tion and time-dependent external fields. The superoperators Aj̄ and Cj are expressed by

Eq. (S1) of Ref. [15]. The index j ≡ (σµm) corresponds to the transfer of an electron to/from

(σ = +/−) the impurity state µ, associated with the characteristic memory time γ−1
m . The

total number of distinct j-indexes involved is determined by the preset level of accuracy for

decomposing reservoir correlation functions by exponential functions. Such a number draws

the maximum tier level Lmax, at which Eq. (1) ultimately terminate [15]. The hierarchy is

self-contained at L = 2 for noninteracting Hsys [14]; while for Hsys involving e-e interactions,

the solution of Eq. (1) must go through systematic tests to confirm its convergence versus

L. In practice, a relatively low L (≈ 4) is usually sufficient to yield quantitatively converged

results for weak and medium impurity-reservoir couplings.

The details of the HEOM formalism are referred to Refs. [14–17]. Here, we focus on

some of its key features: (i) It is based on the Feynmann–Vernon path integral formalism

[18], with fermionic operators represented by Grassmann variables [19]. (ii) It resolves

nonperturbatively the combined effects of impurity-reservoir dissipation, e-e interactions,

and non-Markovian memory [14]. (iii) The influence of reservoir environment on physical

properties of impurities is taken into account via the hybridization functions, which enter

Eq. (1) through a recently developed optimal Padé spectrum decomposition scheme [20,

21]. (iv) Besides the equilibrium dynamical observables, it is also capable of addressing
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nonequilibrium response of quantum impurity systems to external fields such as laser pulses

or applied voltages [17].

The HEOM approach has been applied to study static and transient electron transport

through quantum dot systems, with which some interesting phenomena have been revealed,

such as the dynamical Coulomb blockade [22] and dynamical Kondo transition [16].

In the framework of HEOM, there are two schemes to evaluate the dynamical observ-

ables of quantum impurity systems. (i) Calculate relevant system correlation/response

functions based on an HEOM-space linear response theory [15]. The correlation

function for two arbitrary system operators Â and B̂ is C̃AB(t) ≡ 〈Â(t)B̂(0)〉 =

trtotal[Â(t)B̂(0)ρeqtotal(T )], where ρeqtotal(T ) is the equilibrium density operator of the total

system. C̃AB(t) can be evaluated by using the quantum Liouville propagator in the HEOM

space [15]. Let CAB(ω) ≡ 1
2

∫
dt eiωtC̃AB(t), which satisfies the detailed balance rela-

tion of CBA(−ω) = e−ω/kBTCAB(ω). The corresponding spectral function is JAB(ω) ≡

1
2π

∫
dt eiωt〈{Â(t), B̂(0)}〉 = 1

π

(
1 + e−ω/kBT

)
CAB(ω). In particular, with Â = B̂† = âµ,

Jâµâ
†
µ
(ω) = Aµ(ω) gives the spectral density of impurity state µ, which can be measured

experimentally via angle-resolved photoemission spectroscopy [23] and scanning tunneling

microscope [24]. (ii) Solve Eq. (1) for nonequilibrium electronic response under external

perturbation. For instance, the differential conductance (dI/dV ) can be calculated via the

response current under applied bias, followed by a finite difference analysis. The above two

schemes are completely equivalent for linear response properties.

It is emphasized that the HEOM approach is distinctly different from the conventional

equations of motion (EOM) method using many-body Green’s functions (GFs) as basic vari-

ables [25]. The GF–EOM method often treats the impurities and reservoirs on equal footing.

To close the equations it invokes specific approximations for individual GFs. In contrast, the

HEOM approach focuses on the impurities, with all reservoir degrees of freedom averaged

out properly [14]. Consequently, the HEOM involve much fewer unknowns than GF–EOM

at same tier level. Moreover, the generic form of Eq. (1) applies to any complex impurity

system, without additional derivation effort. Therefore, the HEOM approach outperforms

GF–EOM in terms of both efficiency and universality [15].

For numerical demonstrations, consider first an asymmetric single-impurity Anderson

model (SIAM) system that has been widely studied [26]. Hsys = ǫd(n̂↑+ n̂↓)+Un̂↑n̂↓, where

n̂µ = â†µâµ and U 6= −2 ǫd. Lorentzian hybridization functions, ∆µν(ω) = δµν∆W 2/(ω2 +
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FIG. 1: (Color online). The spin-up or down spectral function of an asymmetric SIAM calculated

by the HEOM approach at different truncation tiers. The inset magnifies the Kondo resonance

peak at ω = 0. The parameters adopted are ǫd = −5, U = 15, W = 10, and T = 0.075 (in unit of

∆).

W 2), are adopted, with ∆ being the effective impurity-reservoir coupling strength andW the

reservoir band width. Figure 1 depicts the calculated impurity spectral function A(ω) by the

HEOM approach, up to the converged tier level. The well-known spectral features of SIAM

are clearly resolved: (i) The two resonance peaks at around ω = ǫd and U + ǫd correspond to

the excitation energies associated with change of impurity occupancy state. (ii) The peak

at the Fermi energy (ω = EF ≡ 0) highlights the presence of Kondo resonance under a

low temperature. (iii) The sum rule
∫
A(ω) dω = 1 is satisfied to numerical precision. The

comparison in Fig. 1 demonstrates distinctly that the HEOM results converge rapidly with

L for full energy range. This confirms that the HEOM results converge quantitatively at a
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FIG. 2: (Color online). Comparison between A(ω) of symmetric SIAM calculated by HEOM and

NRG methods. The parameters adopted are T = 0.2 and W = 50 (in unit of ∆). The inset shows

the imaginary part of interaction self-energy calculated from HEOM at energy close to ω = 0.

relatively low truncation level, even in the Kondo regime.

Figure 2 depicts the calculated A(ω) of a symmetric (U = −2ǫd) SIAM, from weak (U =

0.5π∆) to strong (U = 6π∆) e-e interactions. For comparison, we also show results obtained

by using the full density matrix NRG method [27], where a self-energy scheme of Ref. [28] is

employed, and the results are averaged over 8 different logarithmic discretizations [29]. Note

that our NRG data in Fig. 2 differ slightly from those in Ref. [30], due to different ∆µν(ω)

used (Lorentzian versus constant). Apparently, the two sets of curves agree quantitatively

at all values of U studied. In the weak (U = 0.5 and 1.0 π∆) and intermediate (U = 3π∆)

interaction regimes, HEOM and NRG curves almost overlap with each other; while in the

strong (U = 6π∆) interaction regime minor deviation is observed in the height of Hubbard

peaks, which is possibly due to remaining uncertainty in NRG results [15]. Therefore, such

a benchmark comparison clearly affirms that the HEOM approach achieves the same level

of accuracy as the latest high-level NRG method.
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FIG. 3: (Color online). (a) dI/dV versus T/TK for symmetric SIAM with TK =

(U∆/2)
1

2 e−πU/8∆+π∆/2U [26] andW = 24∆. The inset depicts dI/dV versus unscaled T . (b) Com-

parison between the HEOM numerical results and an analytical expression, Eq. (4.2) of Ref. [35], for

the large–ω tail of A(ω). Other parameters adopted are (in unit of ∆): W = 100, U = −2ǫd = 6π.

See Ref. [15] for more details.

Highlighted in the inset of Fig. 2 are the imaginary part of interaction self-energy (circles),

exhibiting a parabolic lineshape near ω = EF ≡ 0 (lines). This is a clear indication of Fermi

liquid character [26]. Luttinger has proved that the Kondo peak height is exactly 1/π∆ for

a symmetric SIAM at T = 0, independent of U [31]. At finite T and U , it is expected that

in general A(ω = 0) < 1/π∆ [32], as exemplified by both Fig. 1 and Fig. 2.

The HEOM results exhibit the correct scaling behavior by Kondo temperature TK [33, 34].

This is verified by the calculated dI/dV versus T/TK as depicted in Fig. 3(a), where the

universal scaling is clearly manifested at T < TK and ∆ ≪ U ≪ W . Moreover, as T is

lowered, the calculated A(ω) draws progressively to an analytic curve of a logarithmic form

predicted in Ref. [35]; see Fig. 3(b).

We also compare HEOM with the latest continuous time QMC (CTQMC) approach [3] on
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the SIAM studied in Fig. 2. Both approaches yield quantitatively consistent imaginary time

GFs with a maximum relative deviation less than 5%. However, A(ω) of CTQMC suffer from

nontrivial uncertainties in analytical continuation of GFs to real energies by the maximum

entropy method [15]. We then extend the comparison to the exact diagonalization [36–

38], the slave-boson mean-field theory [39], and the non-crossing approximation [40]. The

HEOM approach is apparently much more accurate than these methods [15]. In contrast

to the fact that some existing methods would encounter practical or intrinsic problems in

treating certain forms of e-e interactions, the HEOM approach admits an arbitrary form of

e-e interaction (including spin-flip, electron-pair hopping, and nonlocal Coulomb interaction

[41]) without additional computational cost, as long as it works with the full impurities Fock

space.

The computational cost (time and memory) of present HEOM approach grows rapidly

with the lowered T . This is because the resolution of long-time memory requires more expo-

nential functions, and a higher L is usually necessary to achieve quantitative convergence.

In particular, the cost for producing A(ω) of Fig. 2 is comparable to that required for NRG

and CTQMC [15]; while at a higher T , the HEOM approach would be orders of magnitude

faster. Whereas at extremely low T or large ∆, the present HEOM approach may be very

expensive. It is however possible to reduce the computational cost significantly by designing

more efficient reservoir memory decomposition schemes.

We proceed to demonstrate that the applicability of HEOM approach can be extended

beyond the simple SIAM model and equilibrium properties. To this end, a parallel-coupled

two-impurity Anderson model (TIAM) sketched in Fig. 4(a) is considered, where Hsys =

H1 + H2 + V12, with H1 (H2) being the SIAM Hamiltonian for the impurity 1 (2), and

V12 = t(â†1↑â2↑ + â†1↓â2↓ + H.c.). Such a TIAM model has been realized experimentally via

a double quantum dot system, with the inter-dot coupling strength t tuned by plunger

gates [42]. The nonzero t gives rise to an effective anti-ferromagnetic coupling, J = 4t2/U ,

between the local spin moments at the two impurities. At a weak J , the two spin moments

are nearly independent of each other, and the local spin at each impurity is screened by

itinerant electrons separately. In contrast, at a sufficiently strong J , singlet spin-states

covering both impurities are formed. Therefore, by varying the strength of t, the TIAM

undergoes a continuous transition from Kondo singlet states of individual impurity to singlet

spin-states formed between two impurities, as confirmed by NRG and conformal-field-theory
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FIG. 4: (Color online). (a) A(ω) and (b) dI/dV versus V of a TIAM at various inter-impurity

coupling strength ranging from 0 to 2.5∆. The TIAM system is sketched in (a). The parameters

adopted are (in unit of ∆): W = 10, U1 = U2 = 10, ǫ1 = ǫ2 = −5, and T = 0.5.

calculations [43, 44].

The HEOM approach is applied to evaluate the equilibrium spectral function A(ω) of a

TIAM consisting of two identical impurities, along with its dI/dV versus external bias V .

The latter is a nonequilibrium property, and is achieved via a finite difference approach [15].

The response current is extracted from first-tier (n = 1) auxiliary density operators [14].

Figure 4(a) and (b) depict the calculated A(ω) ≡ A1(ω) = A2(ω) and dI/dV − V , respec-

tively. Apparently, the variation of A(ω) and dI/dV − V with increasing t are analogous

to each other. Their common features are as follows. (i) The system undergoes a transi-

tion from a Kondo singlet involving individual impurity (characterized by the single-peaked

lineshape) at t < ∆, to the singlet spin-state between two impurities (characterized by the

double-peaked lineshape) at t > 1.5∆. (ii) The transition exhibits continuous crossover.

As t increases, the single Kondo peak first broadens and approaches to its maximal height

before it drops and splits into two. These features are consistent with previous experimental
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[42] and theoretical [43, 44] investigations.

To summarize, the practicality of our developed hierarchical Liouville-space approach is

demonstrated through studies on Anderson impurity models, where the key Kondo reso-

nance and Fermi liquid features due to strong e-e interaction are accurately characterized.

The HEOM approach can be straightforwardly extended to more complex quantum impu-

rity models (such as multi-impurity models) without additional derivation and programming

efforts [15]. Once converged, the HEOM results can serve as benchmarks to calibrate ap-

proximate numerical approaches, particularly the effective single-electron approaches, which

are useful for studying more complex systems. Moreover, it is anticipated that HEOM would

become a promising impurity solver for characterizing strongly correlated lattice systems in

the framework of dynamical mean field theory [1].
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