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Theories of phase change and self-assembly often invoke the idea of a ‘quasiequilibrium’, a regime
in which the nonequilibrium association of building blocks results nonetheless in a structure whose
properties are determined solely by an underlying free energy landscape. Here we study a proto-
typical example of multicomponent self-assembly, a one-dimensional fiber grown from red and blue
blocks. We find that if the equilibrium structure possesses compositional correlations different from
those characteristic of random mixing, then it cannot be generated without error at any finite growth
rate: there is no quasiequilibrium regime. However, by exploiting dynamic scaling, structures char-
acteristic of equilibrium at one point in phase space can be generated, without error, arbitrarily far
from equilibrium. Our results, supported by mean-field theory in higher dimensions, thus suggest
a ‘nonperturbative’ strategy for multicomponent self-assembly in which the target structure is, by
design, not the equilibrium one.

Many theories of phase change and self-assembly place
at their heart the idea that dynamical trajectories follow
low-lying paths on the free energy landscape connect-
ing reactants and products [1–11]. This idea underpins
rate equation theories [1, 3–5], classical nucleation the-
ory [1, 2] and density functional theory [7–11] – which
assume that a structure’s morphology is determined by
minima or low-lying paths on the underlying free en-
ergy landscape – and the conjecture of Stranski and To-
tomanow [12], which states that a system, confronted
by a set of free energy barriers, will evolve by crossing
the lowest of them. These formal statements reflect the
intuition that one can generate structures characteristic
of equilibrium using a sufficiently ‘mild’ nonequilibrium
protocol. Many one-component systems indeed assem-
ble in quasiequilibrium [10, 11, 13–15] if they are not
deeply supercooled [16, 17] or plagued by slow particle
dynamics [18]. However, a substantial literature sug-
gests that multicomponent self-assembly is susceptible to
kinetic factors even under conditions of weak driving [19–
26]. For instance, the Stranski-Totomanow assumption
breaks down in a particular case of simulated binary
colloid nucleation, where sluggish inter-species mixing
prevents nuclei from establishing compositional equilib-
rium [27, 28]. Also, binary crystals have been observed in
simulation and experiment to grow out of compositional
equilibrium, even under conditions ‘mild’ enough to pro-
duce morphologically ordered structures [24–26]. To de-
scribe such assembly theoretically, one must account for
dynamical processes that drive a system away from low-
lying paths on the free energy landscape [19–23, 28–31].
On a practical level, one can ask under what conditions
can precisely-defined multicomponent structures be self-
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assembled, if evolution even near a phase boundary leads
to a structure not characteristic of the equilibrium one?

Here we study this question within a prototypical ex-
ample of multicomponent self-assembly. We apply simu-
lation and quantitatively accurate analytic theory to the
fluctuating growth of a model lattice-based fiber built
from red and blue blocks. We show that when com-
positional correlations of the equilibrium structure are
not equal to those of the randomly-mixed material inci-
dent on the fiber, the former cannot be generated at a
finite rate of growth. Moreover, structures that assemble
even close to the phase boundary can be very different
to equilibrium ones. This absence of a quasiequilibrium
regime occurs despite the fact that fibers near the phase
boundary grow in a ‘quasireversible’ manner, displaying
many unbinding events. However, by exploiting dynamic
scaling connecting equilibrium and nonequilibrium pa-
rameter manifolds, defined structures can be generated
without error arbitrarily far from equilibrium. The fail-
ure of a widely-made assumption for perhaps the simplest
example of compositionally inhomogeneous self-assembly
confirms the need for the development of dynamical the-
ories [23, 26, 30, 32–35] in order to describe the self-
assembly of multicomponent structures, and challenges
the idea that the equilibrium structure is the natural tar-
get for multicomponent self-assembly.

Model. We consider a 1-dimensional stochastic growth
process in which a fiber is built from red and blue blocks
(Fig. 1(a)). We add blocks to the right-hand end of the
fiber with rate c (concentration). Added blocks are blue
with probability pblue, and red otherwise. We allow the
rightmost block to detach from the fiber with rate e−βǫi ,
which depends on the nature of the rightmost bond of
the fiber. Nearest-neighboring blocks of the same color
interact with energy −ǫi = −ǫs, while the red-blue in-
teraction is −ǫd (we set β = 1 throughout). We im-
plemented this stochastic process in simulations using a
kinetic Monte Carlo procedure [36, 37]: we removed the
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FIG. 1: Fiber structures depend sensitively upon preparation

conditions. (a) Schematic of fiber energetics and growth rates.
(b) Domain lengths ξ of dynamically-generated fibers of given
energy scales ǫs (simulations: solid lines; theory: dashed lines)
are less than the corresponding equilibrium domain lengths
ξ0 (horizontal dashed lines) for all points past the phase
boundary c = c0 (vertical dashed lines). This breakdown of
the quasiequilibrium assumption reflects the conflict between
compositional correlations of unassembled material and the
equilibrium structure, and occurs despite the fact that fibers
close to the phase boundary grow in a ‘quasireversible’ way.
(c) Simulation data can be collapsed onto a master curve,
summarizing the continuous variation of the scaled domain
length g(ξ) ≡ ξ(ξ − 2)/(ξ − 1) with concentration c.

terminal block with probability premove = 1/
(

1 + c eβǫi
)

,
where i = s or d as appropriate, and otherwise added
a block to the fiber end. This idealized fluctuating pro-
tocol captures the key kinetic constraint imposed upon
the physical process of 3d assembly: material can be re-
moved only from the interface between a structure and
its environment [26]. By considering a lattice model in
which complications of morphology and the possibility
of internal block rearrangements are suppressed, we can
explore directly how this constraint affects pattern gen-
eration. Imposing this constraint results immediately in
important qualitative behaviors seen also in 3d systems;
we shall show how analysis of these behaviors suggests
an unconventional and potentially powerful strategy for
self-assembly.

The ‘equilibrium’ we consider is the one often imag-
ined in theories of self-assembly, corresponding to min-
imization of the free energy of a structure of fixed
size [10, 11, 13, 15]. Such an equilibrium is achieved by
our dynamical protocol in the limit of a large number of
binding and unbinding events per site [52]: a key question

is how the structure generated at a finite rate of growth
compares to the equilibrium one. The energetics of a
fiber of fixed size is that of the 1d Ising model [38, 39],
with Hamiltonian H = −J

∑

i SiSi+1 − h
∑

i Si. Here
the spin variable Si = ±1 describes a blue (Si = 1) or
red (Si = −1) block; the coupling J = (ǫs − ǫd)/2 is the
penalty for domain wall (red-blue bond) creation; and
the magnetic field h = − ln(1/pblue − 1)/2 describes the
bias for blue blocks over red ones. Here we add red and
blue blocks with equal likelihood, i.e. pblue = 1/2, equiv-
alent to h = 0. In this case the equilibrium structure
of a fiber consists of equal proportions of red and blue
blocks arranged into domains whose lengths ℓ occur with
probability ρ0(ℓ) = (ξ0 − 1)−1 exp

[

ℓ ln(1− ξ−1
0 )

]

. Here
ξ0 = 1+ exp(2βJ) is the mean domain length in equilib-
rium.

Results. We carried out dynamic simulations for the
choice ǫd = 1 and a range of values of ǫs > ǫd (for
which ξ0 > 2). For each set of energetic parame-
ters we considered a range of concentrations c. When
c < c0 = 2/(eβǫs + eβǫd) the fiber does not grow. When
c = c0 the drift velocity of the fiber, averaged over dis-
tances greater than a typical domain length, is exactly
zero. The fiber therefore ‘grows’ only by diffusion of its
rightmost end. When c > c0 the fiber grows with nonzero
drift velocity. We therefore consider the concentration
c0 to define the ‘phase boundary’ between non-assembly
and assembly. We stopped dynamic simulations when a
fiber of length L = 2.5 × 104 blocks was generated. We
performed 104 simulations for each concentration consid-
ered, except at the phase boundary, where the diffusive
growth of a fiber was slow; there, we generated about
200 fibers for each set of conditions. For each ensem-
ble of fibers we measured the probability distribution of
domain lengths ρ(ℓ) = n(ℓ)/

∑L

ℓ=1 n(ℓ), where n(ℓ) is
the number of occurrences of domain length ℓ across all
simulations at given thermodynamic conditions. These
distributions were always exponential (Fig.S1) with a
mean ξ depending on all three parameters c, ǫs and ǫd.
This mean is shown in Fig. 1(b) for two choices of ǫs.
At the phase boundary the equilibrium structure is gen-
erated. For all points past the phase boundary, the dy-
namic domain length ξ is less than the equilibrium one
ξ0, despite the fact that fiber growth close to the phase
boundary is highly fluctional, exhibiting many unbind-
ing events (Fig. 1(b), snapshot at right). Moreover, fiber
structures are exquisitely sensitive to preparation condi-
tions, and change continuously with supersaturation.

Analytic theory reveals that this sensitivity is an in-
evitable consequence of the different compositional statis-
tics of the equilibrium structure and unassembled mate-
rial. Consider defect variables ηi ⌘ SiSi+1, where ηi = 1
describes a bulk (same-color) bond and ηi = −1 is a
defect (unlike-color) one. Let φ ⌘ [(ηi+1)/2] be the like-
lihood that a given bond is a bulk one, where the average
[·] is taken over many realizations of the dynamics. Enu-
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meration of basic microscopic processes (seeSI) implies
a drift velocity for bulk domains

vbulk = c/2− φe−βǫs , (1)

and a drift velocity for the fiber

vfiber = c− φe−βǫs − (1− φ)e−βǫd . (2)

At the phase boundary, where vbulk = vfiber = 0,
Eqns. (1) and (2) give the equilibrium bulk fraction
φ0 = 1/(1+eβ(ǫd−ǫs)), and the equilibrium concentration
c0 = 2/(eβǫd + eβǫs). ξ0 and c0 are given by horizontal
and vertical dotted lines on Fig. 1(b). Fiber dynamics

can be solved by requiring vbulk/vfiber = φ, yielding

φ =
c/2− φe−βǫs

c− φe−βǫs − (1− φ)e−βǫd
. (3)

This equation is straightforwardly solved (Eq.S1) for the
domain length ξ = 1/(1−φ), and we plot this solution as
grey dashed lines in Fig. 1(b). The agreement with sim-
ulation is good, confirming the sensitivity of fiber struc-
ture to method of preparation. Moreover, the structure
of Eq. (3) reveals the origin of this sensitivity. Its large-
c limit returns the domain length characteristic of ran-
dom mixing, ξ∞ = 2, which is in general unequal to the
equilibrium domain length ξ0. At the phase boundary,
the balance of c-dependent and -independent terms in
Eq. (3) is such that bulk domains are generated at a rate
characteristic of equilibrium. For finite supersaturation,
however, the statistics of the fiber begins to reflect the
statistics of random mixing: Eq. (3) can be expanded in
small deviations δc ⌘ c− c0 from the phase boundary to
yield

ξ − ξ0 ≈ −
ξ0
c0

(ξ0 − 2)(ξ0 − 1)

ξ0(ξ0 − 2) + 2
δc. (4)

Thus fiber structure is a continuous function of concen-
tration, and the dynamic correlation length is less than
the equilibrium one for any concentration c > c0. Equiv-
alently, structures generated at finite growth rate al-
ways sit above the minimum of the free energy landscape
(Fig.S2).
Comparison of simulation and analytic theory thus re-

veals that a fiber’s dynamically-generated structure can
be understood by considering only the relative net rates
of bulk domain generation and fiber elongation. Al-
though the relaxation time for a given site is governed by
the number of times the fiber end diffuses back and forth
across it, with sites far from the fiber end being ‘locked
in’ [26], the structures generated by our fluctuating sim-
ulation protocol are explained solely by the competition
between the compositional statistics of equilibrium and
random mixing. The departure from quasiequilibrium
follows from this competition enacted at finite drift ve-
locity, where randomness associated with unassembled
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FIG. 2: Defined structures can be grown in equilibrium and

far from it. Along each contour, defined by Eq. (6), identical
structures can be generated by ‘reversible’ dynamic protocols
(at the phase boundary), or nearly irreversible ones (far from
the phase boundary), illustrated by the simulation snapshots.
Inset: ‘distance’ (ξ0−ξ)/ξ0 to equilibrium of structures gener-
ated along the ξ = 15 contour (circles: simulation data; line:
analytic results).

material trumps correlation induced by block binding en-
ergies. The rate of this departure, given to lowest order
by Eq. (4), has practical consequences for the design of
fiber patterns. For target structures mimicking conven-
tional binary crystals, having ξ0 ≈ 1, the conventional
‘perturbative’ scheme of growing some small distance δc
from the phase boundary leads to a structure with few
errors, whose compositional correlations are numerically
close to the target one (Fig.S3). We note that simulated
3d binary crystals can likewise be grown close to composi-
tional equilibrium [26]. However, when the desired target
possesses long range compositional correlations, growth
even close to the phase boundary results in many errors
(Fig.S4). Similar predominance of kinetics is seen in the
growth of segregated binary assemblies [24, 25].
The ‘perturbative’ method of self-assembly thus be-

comes increasingly unattractive as the compositional cor-
relations of the target structure become increasingly com-
plex. Here we propose an alternative ‘nonperturbative’
approach. Our model’s dynamics, Eq. (3), can be cast in
the scaling form

c/c0 = g(ξ0)/g(ξ), (5)

where g(ξ) ⌘ ξ(ξ−2)/(ξ−1) is a scaled correlation length.
This expression reveals that the results of dynamic sim-
ulations can be collapsed onto a straight line connecting
a manifold of nonequilibrium conditions with an equilib-
rium point at (1, 1). We verified this collapse for a range
of simulations carried out at 40 different phase points
(Fig. 1(c)) whose values of ǫs ranged from 2 to 6. The
nature of the master curve demonstrates that no fiber
having ξ = ξ0 can be generated anywhere past the phase
boundary c = c0, and emphasizes the sensitivity of struc-
ture ξ to preparation condition c. But it also describes
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a useful connection between patterns in and out of equi-
librium. It can be rearranged to read

c =
2(ξ − 1)

ξ(ξ − 2)

(

e−βǫd − e−βǫs
)

, (6)

revealing that structures of identical ξ can be generated
on a manifold of parameters c, ǫs and ǫd, regardless of dis-
tance to the phase boundary. We illustrate this manifold
in Fig. 2. ξ is constant along the displayed contour lines.
Simulations verify this prediction (Fig.S5): structures
generated dynamically at the circles on each contour line
are indistinguishable. However, fiber generation changes
from being purely diffusive (and very slow) at the phase
boundary, to being nearly irreversible (and very fast) far
from it, illustrated by the space-time trajectories shown
(see also Fig.S5). Moving rightwards along contours, the
generated structures lie increasingly far from the equi-
librium one for the corresponding energetic parameters
(Fig. 2 inset); nonetheless, structures characteristic of
equilibrium at a particular point on the phase boundary
can be generated by a continuum of nonequilibrium pro-
tocols away from it. In this sense, equilibrium structures
can be grown, error-free, arbitrarily far from equilibrium.
Conclusions. Compositionally inhomogeneous struc-

tures are found abundantly in biology [40, 41], and are
increasingly the target of designed self-assembly pro-
cesses [25, 42–46]. However, it is increasingly clear that
in order to ensure the self-assembly of a desired multi-
component structure, specification of a free energy sur-
face [47, 48] is in general not sufficient [19–25, 25–27].
Instead, explicit accounting of how microscopic dynam-
ics [49] select assembly pathways [50, 51] is required.
Here we have shown how to exploit directly the relation-
ships between the rates of elementary microscopic pro-
cesses in order to generate a structure of defined compo-
sition, regardless of whether that composition is the un-
derlying equilibrium one. Although the model we have
studied is highly simplified, lacking e.g. the coopera-
tivity characteristic of crystals in higher dimensions, it
shares two important qualitative features with real sys-
tems. First, a mismatch in compositional statistics be-
tween randomly-mixed particles and those of the desired
structure means that any attempt to assemble the equi-
librium structure using a nonequilibrium protocol incurs
errors. When this mismatch is small, errors are few (Fig.
S3 and Ref. [26]); when this mismatch is large, errors
are numerous (Figs. 1 & S4 and Refs. [24, 25]). Second,
the dynamic scaling exhibited by our model, which per-
mits the precise far-from-equilibrium assembly strategy
we have described, is strikingly reminiscent of data col-
lapse seen in segregated binary structure growth. There,
an effective compositional order parameter scales with ef-
fective crystal growth velocity [25] (in a regime in which
crystals are morphologically ordered). Mean-field theory
(seeSI) indicates that these similarities are not acciden-
tal, but exist because the dynamic behaviors that allow

the far-from-equilibrium assembly strategy in the fiber
model survive in higher-dimensional systems possessing
thermodynamic phase transitions at finite temperature.
Our results therefore suggest the possibility of doing with
real systems as as we have done within our model: de-
sign compositionally ordered structures in equilibrium,
and assemble them far from it.
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