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We reporttwo-dimensionaldiscrete dislocation dynamics simulations of combined dislocation glide
and climb leading to ‘power-law’ creep in a model aluminum crystal. The approach fully accounts for
matter transport due to vacancy diffusion and its coupling with dislocation motion. The existence of quasi-
equilibrium or jammed states under the applied creep stresses enables observations of diffusion and climb
over time scales relevant to power-law creep. The predictions for the creep rates and stress exponents fall
within experimental ranges, indicating that the underlying physics is well captured.

Dislocations are the main carriers of deformation in crys-
tal plasticity [1]. The glide motion of these line defects
dominates at low homologous temperatures, whereas their
climb, a nonconservative motion mediated by the absorp-
tion or emission of lattice vacancies, becomes important in
high-temperature deformation (creep) [2]. It is generally
believed that the creep strain is mainly produced by dislo-
cation glide at a rate set by dislocation climb [2, 3]. How-
ever, a detailed analysis of the phenomenon is lacking due
to the complexity of incorporating both vacancies and dis-
locations in a single computational framework. As a ther-
mally activated process, the diffusion of vacancies occurs
over times scales that are much longer than can be accessed
by molecular dynamics [4, 5], and available dislocation dy-
namics formulations [6–9] do not account for the nonlinear
vacancy–dislocation interactions inherent to climb [3, 10].
Only recently have dislocation glide and climb been simul-
taneously considered in the simulation of prismatic loop
coarsening [11]. In this Letter,we extend thisapproach
to simulate power-law creep. The approach fully utilizes
quasi-equilibrium or ‘jammed’ dislocation states under the
low creep stresses to effectively bridge the fine time scales
of dislocation glide with the coarse time scales of diffusion-
controlled climb in a single simulation. It also employsa
variational principle to derive boundary conditions for the
coupled problem anda dislocation climb model with atom-
istic fidelity [3].

When the climb motion of noninteracting, pinned edge
dislocation segments normal to the slip plane is assumed
to proceed at a velocity proportional to the applied stress
(σ) [12, 13], the steady-state creep rate exhibits a power-
law stress dependenceε̇ ∝ σn with n = 3 [14]. If glide
is considered in a creep model, Weertman has shown that
the stress exponent increases ton = 4.5; see [15] and ref-
erences therein. In fact, the exponent is between 4 and 8
from experiments [16], which hints to more complex glide–
climb couplings in dislocation creep. Interestingly, re-
cent atomistic simulations, based on a kinetic Monte Carlo
scheme, and accounting only for climb yieldedn ≈ 5 in
bcc iron [10]. However, when this prediction is extrap-
olated to lower, realistic dislocation densities and applied

stress levels,n is found to be no more than 3.5 [3], consis-
tent with any creep model based on pure climb [15]. Here,
we alsoexplore the extent to which the explicit consider-
ation of both climb and glide delivers experimentally re-
ported stress exponents.

In the current literature, three-dimensional discrete dis-
location dynamics formulations of coupled glide and climb
remain scarce [11] and do not address creep predictions.
Some of the remaining challenges involve the disparate
time scales and the precise incorporation of couplings be-
tween elasticity and diffusion. Therefore, the investigation
of creep is of considerable importance, but even in two di-
mensions (2D), this problem has not been solved yet.

We consider asimplified 2Dmodel specimen subjected
to plane strain uniaxial loading at constant average stress
with traction-free top and bottom surfaces, Fig.1(a). The
specimen initially contains discrete edge dislocations, dis-
location sources and obstacles embedded in a linear elastic
material. The instantaneous state of the system is char-
acterized by the positions of all dislocations,x

i(t) (i =
1, 2, 3..), and a continuous field of the fractional vacancy
concentration,c(x, t). The long- and short-range disloca-
tion interactions are handled as in [17, 18] using the finite-
element method. The driving force for dislocation motion
is the generalized Peach–Koehler force while the driving
force for vacancy diffusion is the gradient of the chemical
potential,µ, both of which may be obtained from deriva-
tives of the Gibbs free energy functionG(xi, c). The gov-
erning equations for vacancy diffusion are

ċ = −∇ · J+ ċsrc (1)

J = −
DΩ

kT
∇µ (2)

µ =
kT

Ω

[

Ef

kT
−

pΩv

kT
+ log

c

(1− c)

]

(3)

Equation (1) follows from mass conservation whereJ de-
notes the volumetric flux of vacancies andċsrc is a pro-
duction term(see below).In (2) and (3), k is Boltzmann’s
constant,T the absolute temperature,Ω the atomic volume,
Ef the vacancy formation energy,p = p(x, t) denotes the
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FIG. 1: (color online) (a) Sketch of computational specimencontaining discrete edge dislocations on two independent slip systems
oriented at±35.25◦ with respect to the axis of loading (horizontal). (b) Contours of vacancy concentration superposed on the positions
of dislocations (positive: black; negative: gray) before the first climb event in a creep simulation (σ = 40 MPa, T = 400 K). (c)
Magnified view of a1.5 × 0.5µm region around the climbing dislocation (red circle). (d) Typical contours of slip over a time interval
of 200s aroundt = 4000s in the same creep simulation.

hydrostatic pressure field,Ωv the vacancy relaxation vol-
ume, andD = D0 exp

(

−
Em

kT

)

thevacancy diffusion co-
efficient, with Em the vacancy migration energy. In the ab-
sence of pressure gradients, equation (2) reduces to Fick’s
first law of diffusion. The glide velocity,vig, of dislocation
i is taken to be proportional to the glide component of the
Peach-Koehler force,f i

g, as

vig = f i
g/B(T ) (4)

where the drag factorB varies linearly with temperature
[13]. In the most fundamental formulation, the climb ve-
locity, vic, is determined by mass conservation frombivic =
∫

∂Ci J · n dS where ∂C i denotes the dislocation core
boundary with inward unit normaln, so thatċsrc = 0
in (1). To circumvent the computational complexity of such
an approach,vic, is estimated from thenet flux of vacancies
to/from the dislocation core and mass conservation,over a
larger volumeunder steady state climb conditions and as-
sumed radial symmetry around the core [13, 19]

vic = −η
D

bi

[

c0 exp

(

−
f i
cΩ

bikT

)

− c

]

(5)

The first term in brackets is the concentration of vacancies
in equilibrium with the core, wheref i

c denotes the climb
component of the Peach-Koehler force,bi is the magnitude
of the Burgers vector andc0 = exp (−Ef/kT ) is the equi-
librium vacancy concentration in a bulk material at temper-
atureT . c is the ambient vacancy concentration away from
the dislocation core, here obtained from the solution of the
global diffusion equations interpolated to the dislocation
position under the assumption that the dislocation core ra-
dius is much smaller than the length scale of the gradients

of c. η is a constant of order unity. As shown in [3] the per-
formance of analytical estimate (5) against atomistic simu-
lations is remarkable.Consistent with this, the terṁcsrc is
added to (1) to account for the net absorption/emission of
vacancies in the volume element.

In order to perform creep simulations over time dura-
tions sufficient to establish a steady state, we used an adap-
tive scheme to increment the simulation time step proceed-
ing as follows. We first relaxed the initial dislocation mi-
crostructures at zero stress until the dislocations attained
quasi-equilibrium positions. Thereafter, we applied the
creep stress (below the nominal yield stress of the speci-
men) and performed the simulation using a small time step
of 0.5 ns to resolve glide-related events until the overall
strain attained a constant value as determined by measur-
ing the average slope of the strain vs. time plot over a pre-
defined interval. Attainment of such a ‘jammed’ or quasi-
equilibrium state enables observation of creep deformation
over macroscopically relevant time scales. Indeed, at that
point, we computed the evolution of the vacancy field by
solving equations (1)–(3) using the finite element method
and a much larger value of the time step, dependent on
temperature as per the analytical estimate (5) for climb-
ing to a neighboring slip plane.Dirichlet boundary con-
ditions were imposed forc corresponding to the equilib-
rium concentrations at the boundaries consistent with the
imposed tractions. The initialc field was specified ac-
cording to the steady state solution of equation (1), with
ċ = 0 and ċsrc = 0. (Due to the much larger value of
the time step used, the diffusion equations are solved using
a fully implicit algorithm as opposed to a simple forward
Euler scheme for the glide steps.) When the first ‘activa-
tion event’ is detected, i.e. when any dislocation climbs to
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FIG. 2: (a) Creep curves showing the total strain,ǫ, as a function
of time,t, for various values of the creep stress atT = 400 K. (b)
Corresponding evolution of the dislocation density,ρ.

a new slip plane thereby enabling further glide, the time
step is reverted to the fine 0.5 ns value. Note that the dislo-
cation dynamics (DD) and the vacancy diffusion problems
are inherently coupled since the frequency and locations
of the dislocation climb events are determined by the va-
cancy distribution according to equation (5) and any pro-
duction/annihilation of vacancies due to climb affects the
evolution of the vacancy field through the production term
in equation (1).

We performed all simulations using physical properties
of fcc aluminum: Young’s modulusE = 70 GPa, Pois-
son’s ratioν = 0.33, Ef = 0.67 eV, Em = 0.61 eV,
D0 = 1.51 × 10−5 m2/s [20]. Also,B(T ) = 10−4

×

(T/300) Pa s,Ω = 16.3 Å3 andb = 0.25 nm. The re-
laxation volume of a vacancy in Al is neglected and the
geometry factorη in (5) is taken to be unity. The tem-
perature dependence of the elastic properties is neglected.
Fig. 1(b) shows the dislocation positions before the first
climb event in a creep simulation of a12×4 µm2 specimen
atT = 400 K andσ = 40 MPa superposed with contours
of the normalized vacancy concentrationc/c0. Fig. 1(c)
shows a magnified view of a1.5× 0.5 µm2 region around
the climbing dislocation. Fig.1(d) shows the contours of
cumulated plastic slip over a 200 seconds time interval in
the same specimen. Unlike in a plasticity simulation by
pure glide, which shows sharp slip traces oriented along
the slip planes, Fig.1(d) shows some bands oriented nor-
mal to the slip planes indicating dislocation climb activity.

A large number of creep simulations have been carried
out in the temperature rangeT = 400–800 K (0.43Tm–
0.86Tm, Tm = 933 K for Al) and stressesσ = 10–90
MPa (spanning the range10−4G–10−3G for the resolved
shear stress withG = E/2/(1 + ν) the shear modulus).
Fig. 2(a) shows the creep curves obtained from the DD
simulations atT = 400 K (0.43Tm) and several values
of the creep stress. The high temperature DD simulations
yield a steady state creep response with the strain rate in-
creasing with the applied stress. A characteristic feature
of steady state creep is that the material microstructure re-
mains unchanged with time on average. An average de-
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FIG. 3: Variation of the creep strain rate as a function of recip-
rocal temperature for various values of the creep stress. The Ar-
rhenius activation energy for creep estimated from the average
slopes of the above plots is approximately 120 kJ/mol.

scription of the microstructure in the present problem is the
dislocation density, which is plotted as a function of time
in Fig. 2(b) corresponding to the creep curves in Fig.2(a).
Following a rapid initial transient, the dislocation density
evolves slowly with time except at high stresses indicating
that steady state conditions have been attained. The steady
state creep rates depend exponentially on the temperature
and the relationship between the creep rates and the tem-
perature follows an Arrhenius type equation

ǫ̇ = ǫ̇0 exp

(

−
Q

kT

)

(6)

where the activation energy for creep,Q, is experimentally
known to be close to the activation energy for self diffu-
sion,Es = Ef+Em. The former may be determined from
the negative slope of the logarithm of the strain rate plot-
ted as a function of the reciprocal temperature, as shown
in Fig. 3 for various values of the creep stress. Notice that
a more or less constant slope is obtained for the activation
plot irrespective of the creep stress and the measured value
of Q = 120 kJ/mol compares favorably with the value of
Es = 123 kJ/mol assumed in the simulations.The emer-
gence of creep from DD simulations (Fig. 2(a) and Fig. 3)
is the main result of this letter.

The stress dependence of the creep rate has been probed
in the temperature rangeT = 400–800 K. Fig. 4 plots
the steady state creep rates (determined approximately by
a linear least squares fit to theǫ − t plots) as a function
of the creep stress atT = 600 K on a log-log scale and
illustrates the typical emergent behavior. A minimum of
three sets of simulations have been performed using dif-
ferent realizations of the initial dislocation, source andob-
stacle structure for a given value of the creep stress.These
attributes of the initial microstructure are chosen so thatthe
nominal yield stress in a displacement driven simulation is
≈ 80 − −90 MPa. The slope of the log-log plot gives the
stress exponentn. The results show two distinct regimes
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FIG. 4: Scaling of the net creep strain rate,ǫ̇, with the normalized
resolved shear stress,τ/G, atT = 600 K. The strain rates are av-
eraged over at least three realizations of the initial microstructure,
consisting of randomly distributed dislocations, point sources and
obstacles with a specified average density. The creep exponent,
n, is measured as the slope of the curve on the log–log plot. The
inset shows the scaling of the creep rate due to vacancy diffusion
(Nabarro-Herring creep).

where the stress exponent approaches unity towards low
values of the creep stress (τ ∼ 10−4G) while n ≈ 5 is
obtained at high stresses (τ ∼ 10−3G).

The creep strain in Fig.2(a) has two components: one is
mechanical that results from dislocation motion, the other
is diffusive due to transport of matter towards the loaded
ends of the specimen. The average creep rate due to mass
transport,ǫ̇d, is estimated as the total volumetric flux of
vacancies from the end faces normalized by the volume of
the specimen. The inset in Fig.4 plots just the diffusion
component of the creep strain rateǫ̇d as a function of the
stress. The latter yields a stress scaling exponentn = 1 as
expected for the Nabarro–Herring creep mechanism. Also,
it is clear that atT = 600 K, the diffusion contribution
to the overall creep rate is negligible compared to that due
to combined dislocation glide and climb. The same quali-
tative behavior as in Fig.4 is obtained at all temperatures
above0.4Tm. Fig. 5 summarizes the results of our simu-
lations and shows the measured value ofn at low and high
stresses as a function of temperature. Values ofn close to
unity are obtained at low stresses while at high stresses the
predicted values ofn span the range5–7, well within the
experimental range of4–8.

The good agreement between the calculated and mea-
sured power-law creep exponents isa majorresult of this
letter.We note, however, that a 2D treatment of dislocation
dynamics sets restrictions on (i) the actual degrees of free-
dom that flexible dislocations have; and (ii) the incorpora-
tion of other recovery mechanisms, such as cross-slip [21],
or bypassing versus shearing of precipitates. It remains to
be seen what stress exponents will emerge from fully 3D
simulations, properly extended as done here in 2D.

Our results show that meso-scale simulation methods
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such as DD can provide new insights into aspects of ma-
terial behavior heretofore not explained using continuum
approaches. Unlike fully discrete methods such as molecu-
lar dynamics, meso-scale methods offer better scalabilityto
larger and more complex problems. Beyond the athermal
interactions of dislocations considered in most DD stud-
ies, thermally activated mechanisms of deformation pre-
dominate under different regimes of stress and tempera-
ture, as illustrated succinctly in deformation mechanism
maps [16]. Our results show that power-law exponents of
5 and higher emerge, at realistic levels of stress and dis-
location density, when both climb and glide are modeled
and that the collective behavior of dislocations, which is
not amenable to simple analytical treatment, contributes to
the power-law dependence.
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