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We scan the collision energy of two clouds of cesium atoms between 12 and 50 μK in 

atomic fountain clock. By directly detecting the difference of s-wave scattering phase 

shifts, we observe a rapid variation of a scattering phase shift through a series of 

Feshbach resonances. At the energies we use, resonances that overlap at threshold 

become resolved. Our statistical phase uncertainty of 8 mrad can be improved in future 

precision measurements of Feshbach resonances to accurately determine the Cs-Cs 

interactions, which may provide stringent limits on the time variation of fundamental 

constants. 

PACS: 34.50.Cx, ρ06.30.Ft 

Feshbach scattering resonances occur when the continuum state of two colliding particles 

couples to a bound state (Fig. 1) [1].  Feshbach resonances have found wide applicability in 

dilute, ultracold, atomic and molecular gases because they provide an accessible control of the 

inter-particle interactions [2-6]. Feshbach’s elegant treatment of scattering resonances showed 

that scattering phase shifts, and hence cross sections, change rapidly as the collision energy tunes 

through resonance. The rapid phase change is a general feature of resonance phenomena and the 

resonant energy dependence of cross sections has been observed in a variety of experiments, 

including neutron and electron scattering and photodetachment [7-9].  In ultracold gases, so far 

magnetic fields have been used to tune resonances to threshold, changing the energy of the 

bound state by vertically translating the grey potential in Fig. 1, instead of tuning the collision 
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energy [3-11]. Here, we scan the collision energy between two ultracold clouds of cesium atoms 

in an atomic clock and directly observe the scattering phase shift [12] through a series of 

scattering resonances. Increasing the collision energy allows us to resolve resonances that 

overlap at threshold. Precise measurements of scattering phase shifts through a resonance will 

very accurately determine the resonance position, giving a highly precise determination of the 

atomic interactions [5] and a potential route to stringent limits on the time variation of 

fundamental constants [13,14]. 

We directly measure scattering phase shifts by preparing cesium atoms in coherent 

superpositions of the two clock states and detecting the phase shift of these coherences after the 

clock atoms scatter off atoms prepared in a pure ‘target’ state (Fig. 2 inset) [12]. When the ⎜40Ú 

(⎜30Ú) clock state scatters off the target atoms, it acquires a scattering phase shift δ4(δ3). The 

phase of the clock coherence, the superposition of ⎜F=3, mF=0Ú and ⎜40Ú, precesses as hands on a 

clock. The scattering causes the phase of the coherence to jump by the difference of the 

scattering phase shifts, Φ=δ4−δ3 [12], represented by the time difference between the ring of 

scattered clocks and the unscattered clock in the Fig. 2 inset. We directly detect Φ as a phase 

shift of the clock’s Ramsey fringes as in Fig. 2(b). To be sensitive to the s-wave phase shifts, we 

detect atoms that scatter near 90°, using the Doppler shift of a stimulated-Raman transition 

[12,15]. By also measuring the cross sections for each clock state on ⎜32Ú, we isolate the 

scattering resonances to only the ⎜32Ú ⊗ ⎜40Ú channel, and exclude the ⎜32Ú ⊗⎜30Ú channel. 

In our fountain clock, we launch two clouds of cesium atoms with short time delays, 6.5-11 

ms, to give collision energies between 12 and 50 μK [12,16]. A series of microwave pulses in 

three microwave cavities state prepares the atoms in the first cloud (C1) in a desired 

⎜3,mF=1,2,3Ú target state and the second cloud (C2) in ⎜41Ú. A two-photon stimulated Raman 

transition transfers a 270 nK wide slice of the C2 vertical velocity distribution from ⎜41Ú to ⎜30Ú. 

Interleaved with these transitions are clearing laser pulses tuned to the 6s½,F=4 → 6p3/2,F'=5’ and 

2-3’ transitions that remove unselected atoms. The microwave clock cavity then prepares C2 



atoms in a coherent superposition of ⎜30Ú and ⎜40Ú and the clouds collide near the apogee. A 

small fraction of the atoms in the clouds scatter, forming an expanding spherical shell of atoms, 

whose coherence is shifted by the difference of their s-wave scattering phase shifts. When the 

scattered shell is centered in the clock cavity, a second π/2 clock pulse converts the phase of the 

scattered atoms' coherence into a population difference between ⎜30Ú and ⎜40Ú. A clearing pulse 

then removes the C1 target atoms and the atoms in ⎜30Ú. To detect the scattered atom's Ramsey 

fringe, we velocity-selectively transfer atoms that scatter near 90° from ⎜40Ú to ⎜30Ú. After 

clearing and optical pumping pulses remove F=4 atoms, a laser beam tuned to F=4 → F'=5 

excites the atoms and we collect the fluorescence with a lens and photodiode.  To detect the 

phase shift of the scattered atoms, we use the phase of the unscattered atoms as a reference (Fig. 

2(B)) and, to measure and remove backgrounds, we use a pump-probe technique where we 

inhibit the selection of either C1, C2, and both clouds [12].  

Fig. 2 shows a large and rapid variation of the scattering phase shifts Φ as a function of 

collision energy Ec and magnetic field B for target atoms prepared in ⎜32Ú. Feshbach resonances 

generally tune with both the collision energy Ec and magnetic field B, with a slope in the Ec - B 

plane that is given by the difference of the magnetic moments of the coupled bound state and the 

incident channel. The black lines in Fig. 2 show the slopes for magnetic moments of ½ , 1, 3/2, 

and 2 Bohr magnetons, μB. Strikingly, all of the features we observe for ⎪32Ú target atoms, as 

well as ⎪33Ú and ⎪31Ú targets below, follow one of these slopes with intercepts that are near the 

origin of the Ec - B plane. For a single narrow Feshbach resonance, the observed width would be 

proportional to the spread of collision energies, roughly proportional to Ec
½. Instead, the features 

in Fig. 2 follow the black lines, scaling linearly with energy, as expected if there were two (or 

more) Feshbach resonances, with different magnetic moments. The small intercepts of the 

features suggest that the bound states have small binding energies (at B=0), lying very close to 

threshold, Ec=0. Further, if the slopes are multiples of μB/2, it is likely that the bound states are 

halo molecular states, which have magnetic moments that are essentially the same as those for 



free atoms. For s-wave Feshbach resonances, the halo states asymptotically correspond to ⎪31Ú ⊗ 

⎜41Ú, ⎜30Ú ⊗ ⎜42Ú, ⎪3,−1Ú ⊗ ⎜43Ú, and ⎪3,−2Ú ⊗ ⎜44Ú at large internuclear separations. The 

magnetic moments for these halo states near threshold give resonance positions near the black 

lines in Fig. 2. We note that coupling to these states conserves the total z angular momentum, the 

total molecular MF, as required for an s-wave resonance. If the Feshbach resonances had an 

angular momentum higher than s-wave, other total MF’s would be allowed, with corresponding 

differences of magnetic moments. We have not observed these for target atoms in ⎜32Ú, or ⎪31Ú 

or ⎜33Ú. 

The shape of the resonant phase shifts in Fig. 2(a) versus magnetic field is remarkably similar 

for all of our collision energies Ec. If the corresponding bound states for all the Feshbach 

resonances have the same binding energy ΔE ≈ 0, scaling the magnetic field B as B/( Ec+ΔE) 

should align all of the resonances, as in Fig. 2(c).  As for any general resonance, the scattering 

phase shift goes through π as we sweep across a resonance. However, if each resonance is 

narrower than our rms spread of collision energies δE, the peak-to-peak phase excursions will be 

smaller, with an amplitude proportional to δE−1.  We prepare the atoms in each cloud with a 

mean temperature of 590 nK, which gives δE=3.2 μK at Ec =12.2 μK and a larger δE=8.9 μK at 

49.2 μK, proportional to Ec
½ [16]. Thus, the observed peak-to-peak phase excursions are smaller 

for large Ec. With this phase and B/Ec scaling, the magnetic field dependence through the series 

of the Feshbach resonances in Fig. 2(c) has nearly the same form over our range of energies.  

Averaging this scaled data gives a function (black curve) to compare to the measured phase 

versus Ec and B.  Interestingly, the black curve and the data for each Ec show the statistical 

significance of a nearly flat region between 3/2 and 1μB; the phase steeply decreases, flattens, 

and then continues steeply down again for all of the collision energies, which can occur if there 

are resonances near 3/2 and 1μB. We speculate that a Feshbach resonance should also exist near 

½μB. If it does, it is apparently sufficiently narrow that we do not resolve it for ⎪32Ú targets, but 



the bound state coupling is evidently larger for ⎪33Ú target atoms as we observe this resonance 

below. 

Figure 3(a) depicts the bound state energies versus magnetic field (black lines), for multiples 

of μB/2 with ΔE =0.  The intersections of these bound state energies with our six chosen collision 

energies (horizontal lines) represent the positions of potential Feshbach resonances. In Fig. 3(c) 

the scattering phase shift difference for the ⎪32Ú target atoms is shown for each Ec versus B, 

along with the grey curve, the average of the scaled data in Fig. 2(c). While this curve describes 

the data quite well, there are deviations that vary systematically with energy. These deviations 

could be due to the multiple bound states having significantly different binding energies ΔE. In 

addition, biases in the effective collision energy can occur since the ⎜32Ú ⊗ ⎜40Ú and ⎜32Ú ⊗ ⎜30Ú 

scattering cross sections are energy dependent. Both contribute to an energy bias of the scattered 

atoms that we detect. Full coupled-channels calculations yield both the phase and cross-section 

variations and a comparison of these with such measurements can precisely test and improve our 

knowledge of the Cs-Cs molecular interactions. We find that all the resonances, when 

extrapolated to B=0, are consistent with binding energies between 0 and 10 μK. This is 

consistent with a previous observation of frequency shift cross sections at threshold, which 

appeared to indicate the existence of one or two overlapping Feshbach resonances of states with 

binding energies of ΔE =0 < 0.5 μK at B=0 [17,18]. 

Figures 3(b) and (d) show the measured phase shift differences for target atoms in ⎪33Ú and 

⎪31Ú. The ⎪33Ú and ⎪31Ú scattering shows features near the magnetic moments of the same halo 

molecular states as ⎪32Ú. Here, ⎪33Ú scattering has a clear resonance that asymptotically 

corresponds to ≈μB/2 for the ⎜32Ú ⊗ ⎜41Ú exit channel.  

Fig. 3(e) shows the phase difference for a ⎜3,−3Ú target, which has no obvious resonances. We 

use this channel to measure small magnetic field gradients throughout the atomic trajectories in 

our fountain clock [16], which make a clock precision of 8 mrad challenging at high magnetic 

fields. While the clock transition, ⎪30Ú→⎜40Ú, has no linear Zeeman shift, it has a quadratic 



Zeeman shift of 427 Hz/G2. At B=1.8 G, the quadratic Zeeman shift is 1.4 kHz. With a typical 

Ramsey fringe linewidth of 4.4 Hz for 33.3 μK, an 8 mrad phase uncertainty corresponds to a 

frequency uncertainty of 11 mHz, and a magnetic field uncertainty of 7 μG. Since we sweep over 

a wide range of magnetic fields, our clock has no magnetic shielding. To achieve this precision, a 

flux-gate magnetometer and control system actively stabilizes the vertical field, reducing the 

background fluctuations of approximately 3 mG. We use the unscattered clock atoms [Fig. 2 

inset and (b)] to measure the quadratic Zeeman shift along the fountain trajectory. Because the s-

wave halo of scattered atoms follows a different trajectory than the unscattered atoms, magnetic 

field variations in our clock produce a phase shift of order 100 mrad for B > 1G.  We therefore 

interleave measurements of ⎜44Ú or ⎜3,−3Ú target atoms, prepared with a non-adiabatic magnetic 

field reversal (Fig. 3(e)). Since the phase shifts for these states show no scattering resonances, we 

use ⎜3,−3Ú and ⎜44Ú targets to measure and correct the magnetic field variations for the scattered 

halo for other target states [16]. 

We note that scattering phase shifts have sharp steps as inelastic scattering channels close. 

While scattering phase shifts wrap through π at Feshbach resonances, phase steps at inelastic 

thresholds do not, and are often small [19,20]. The phase excursions we observe are large, even 

after thermally averaging. Therefore, these are almost certainly Feshbach resonances, along with 

smaller contributions from inelastic thresholds. The peak-to-peak phase excursions we see are 

consistent with Feshbach widths of order of several mG. If the widths were significantly wider 

(narrower), our spread of collision energies would yield larger (smaller) peak-to-peak phase 

excursions. 

The spread of collision energies for two colliding clouds is significantly larger than their 

temperatures of each cloud for high collision energies. The spread is 

δE=[E0(T1+T2)+3/8(T1+T2)2]½, where E0 is the collision energy due to the relative velocities of 

the two clouds (T=0 limit) and T1 and T2 are the temperatures of each cloud [16]. In our fountain 

clock, the atoms are cooled using degenerate sideband cooling in a moving-frame optical lattice 



[21]. The first cloud's temperature (≈790 nK) is higher than the second's (≈390 nK) since the first 

cloud, multiply loaded in a double-MOT [12], has more atoms than the second, which is 

launched directly from a vapor-cell MOT.  

In conclusion, we directly observe a rapid variation of s-wave scattering phase shifts as we 

scan the collision energy through a series of Feshbach resonances. Reducing the spread of 

collision energies could yield even more precise measurements of the phase shifts and the 

positions of the Feshbach resonances.  To resolve these overlapping resonances, the collision 

energy has to be of order 10 μK. Currently, our state-preparation velocity selects the second 

cloud to 270 nK and this velocity selection can be narrower.  Adding a narrow velocity selection 

of the first cloud will help even more. Since only the velocity spread along the collision axis 

contributes significantly to the spread of collision energies, cooling in one dimension is sufficient 

[22].  Alternatively, a sample can be evaporatively cooled, split, and then accelerated to collide 

[23,24].  Higher energy resolution and a thorough evaluation of systematic errors will lead to a 

highly precise determination of the cesium interactions [5,25,26]. In turn, these can place 

stringent limits on the time variations of underlying fundamental forces [13]. 

We acknowledge discussions with S. Kokkelmans and E. Tiesinga and financial support from 

the NSF and Penn State. 
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Fig. 1 (color online). A Feshbach scattering resonance occurs when the collision energy Ec (aqua 

solid arrow) has the same energy as a bound state of the two particles. We scan the collision 

energy from 12 to 49 μK (dashed arrows) and observe a series of Cs Cs-scattering resonances. 

The schematic grey potential energy surface, as a function of internuclear distance R, can also be 

shifted vertically by changing the magnetic field B, which instead shifts the energy of the bound 

state ΔE. Throughout the paper we use energy units of Ec/kB. 

 

Fig. 2 (color online). (Inset) Clock atoms in a coherent superposition of two internal clock states 

scatter off of targets atoms (in ⎜32Ú), giving each clock state a quantum scattering phase shift. 

The phase of the clock coherence is represented by the time of the scattered and unscattered 

clocks. For scattered atoms, the clock phase is shifted by the difference of the quantum scattering 

phase shifts Φ of the two clock states. (a) Resonances of quantum scattering phase shifts versus 

collision energy Ec and magnetic field B. The measured phase differences Φ (grey dots) are the 

difference of s-wave phase shifts for the cesium clock states scattering off cesium atoms 

prepared in ⎜32Ú. The black lines illustrate the allowed differences of magnetic moments for an 

l=0 halo molecular state. Features at μB and 3/2μB suggest the bound-states are resonant near 

Ec=0. For clarity, the vertical scale varies linearly with Ec. (b) Atomic clock transition 

probability with two π/2 pulses for scattered (solid) and unscattered (dashed) atoms at Ec=12.2 μ 

K and B=0.3 G. The phase shift Φ is plotted in (a). Each point represents the average of 18 

fountain launch measurements, plus background measurements [16]. (c) Φ from (a) versus B, 

scaled by Ec, yields essentially the same shape for all Ec, as expected for the peculiar case of 

bound states near threshold. Here the amplitude of Φ is scaled by the spread of collision energies 

δE as discussed in the text. The black vertical lines represent the same magnetic moments in (a) 

and the data point colors are from Fig. 1. The weighted average of Φsc versus B gives an 

approximate reference shape for all energies (grey curves). 



Fig. 3 (color online). (a) Positions of Feshbach scattering resonances versus Ec and B, denoted 

by the large symbols (squares,diamonds, circles, triangles), for molecular bound states that are 

resonant at threshold, with magnetic moments that are different from those for bare atoms by (½, 

1, 3/2, 2) μB. The experimental Ec's are depicted by the dashed horizontal lines. (b-e) Measured 

difference of s-wave quantum scattering phase shifts for 6 collision energies Ec versus magnetic 

field B, for target atoms in ⎪33Ú, ⎪32Ú, ⎪31Ú, and ⎜3,−3Ú. As in Fig. 2(a), the scattering resonances 

shift with Ec and B. In (b-d) at all energies, scattering resonances occur near the symbols from 

(a) (see text). (c) Inset: The scattering cross section of ⎪32Ú on ⎜40Ú (magenta) shows scattering 

resonances, whereas ⎪32Ú on ⎪30Ú does not. In (e), note that the target for 12.2 μK is ⎜44Ú. 

 








