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The evolution of an initially smooth spatial inhomogeneity in the density of a one-dimensional
Fermi gas is well described by classical mechanics. The classical evolution leads to the formation
of a shock wave: the density develops kinks in its coordinate dependence. We show that quantum
corrections to the shock wave produce density ripples which run off the kinks. Despite their quantum
origin, the amplitude and period of the ripples are expressed only in terms of classical objects derived
from a smooth density profile.
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In one-dimensional many-body physics, numerous
long-wavelength properties of a quantum system are
faithfully represented by the dynamical properties of a
continuous liquid. Such representation is at the heart of
a powerful bosonization method [1–3] . Small-amplitude
perturbations of the liquid’s density may be considered
in a harmonic approximation. In that approximation,
waves of density are linear, and there is no difference
between the quantum and the classical dynamics of the
density perturbations. At larger amplitudes, waves be-
come nonlinear; it is not clear then, if the classical and
quantum dynamics remain indistinguishable even in the
long-wavelength limit.

In a liquid made of fermions, higher density is associ-
ated with higher Fermi momentum and higher particles
velocities. Described classically, a higher-density soli-
tary segment moves faster than its lower-density periph-
ery. That leads to a wave overturn and the formation of
shocks in the density ρ(x, t), i.e. points xγ(t) where the
x-dependence of ρ looses its analyticity. Formation of
shocks can be seen within a classical continuous medium
description in terms of the Riemann-Hopf equation [4–
6]. It is insensitive to the interaction strength, which
can be set to zero (the free fermions case). The classi-
cal description of propagation of shock waves in a gas of
quantum particles is widely accepted across the fields of
quantum physics from string theory [7] to cold atomic
gases [8] . In the case of free fermions, however, one
may also investigate the fully-quantum evolution of the
many-body wave function, which is a Slater determinant
of free-propagating single-particle states.

We consider the shock formation in the semiclassical
limit of the quantum evolution of free fermions. Our
main finding is the appearance of oscillatory structure in
∂ρ/∂x accompanying each of the shock points xγ(t). This
structure, quantum in origin, has a characteristic scale of
variation fully determined by the solution of the classical
problem. (In that respect, the free-particle many-body
wave function associated with the shock formation bears
some resemblance to the WKB wave function of a single
particle in an external potential.) In classical physics, the
formation of shocks [6][9] is associated with the presence
of velocity gradients. The inverse time to develop a shock
can be estimated as tS ∼ |dv/dx|, where v(x) is the initial

velocity distribution. If the velocity gradient comes from
a “bump” ∆ρ in the density of fermions, then the cor-
responding density gradient, dρ/dx = (m/~)dv/dx be-
comes large in the semiclassical limit, ~ → 0 at fixed
dv/dx (hereinafter m is the mass of a fermion). Together
with |dρ/dx|, the total number of particles ∆N in the
density bump scales as 1/~. We show that 1/∆N can be
consistently used as a small parameter in the semiclassi-
cal expansion. The characteristic length of the oscillatory
structure around a shock point scales as (∆N)−2/3.

We are considering the time evolution of a solitary den-
sity maximum ρ(x, t), which initially (at t = 0) has spa-
tial extent ∆x and amplitude ∆ρ,

ρ(x, 0) = n0 + ∆ρf
( x

∆x

)
. (1)

Here the dimensionless positive function f(s) reaches a
maximum, f(0) ∼ 1, at s = 0, has spatial extent |s| ∼ 1,
and decays outside that region, f(s→ ±∞) = 0, reveal-
ing the background equilibrium density n0 = KF /π of a
Fermi sea (|k| ≤ KF ) of spinless particles. We aim to
describe the motion of semiclassical perturbations. That
leads us to assume that many particles go into the cre-
ation of the perturbation, ∆N = ∆ρ∆x � 1. Our fur-
ther assumption is that the density perturbation is small
compared to the equilibrium density, ∆ρ� n0. The two
latter assumptions mean that KF∆x� ∆N � 1; there-
fore, the density perturbation consists of particles and
holes residing in the narrow vicinities δk ∼ KF∆ρ/n0 of
the Fermi points ±KF .

There are several characteristic time scales for the evo-
lution of the density perturbation. First, it will de-
compose into right- and left-moving modes, associated
with particle-hole excitations around each one of the
Fermi points. The characteristic time associated with
this process is tLR = (m/~)(∆x/n0). Next, there is
a characteristic time over which the wave packet rep-
resenting a single fermion spreads over a spatial scale
∆x of the initial many-body state. This time is given by
tQ = (m/~)(∆x)2. On this time scale the evolution ceases
to be semiclassical. Finally, in the course of the semi-
classical evolution of the density perturbation, it may
develop a shock, in analogy to the one-dimensional clas-
sical hydrodynamics. This effect has been discussed, e.g.,
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in [10]. The corresponding characteristic time scale is
tS = (m/~)(∆x/∆ρ).

Our assumptions ∆N � 1 and ∆ρ � n0 lead to the
time scales hierarchy, tLR � tS � tQ. Namely, first the
perturbation splits into left and right moving modes, then
classical shocks have a chance to appear in each of the
modes, and only at much later times the semiclassical
nature of the evolution breaks down. We focus on the
evolution occurring on time scale ∼ tS .

Since we are interested in the semiclassical regime, it
is convenient to use the Wigner function,

W (x, k, t) =

∫ 〈
Ψ|ψ†

(
x+

y

2
, t
)
ψ
(
x− y

2
, t
)
|Ψ
〉
e−ikydy,

(2)

where |Ψ〉 is the initial (t = 0) state of the system.
In equilibrium, |Ψ〉 is a state where all single parti-

cle levels with momenta between −~KF and ~KF are
occupied, while all other states are empty. Here KF =
πn0. This state leads to a Wigner function given by
W (x, k, t) = θ (KF − k) θ (k +KF ) . The Wigner func-
tion is interpreted as a distribution in phase space of
the Fermions, which, in equilibrium, occupy the region
−KF < k < KF for all x, namely a band in phase space.

We can think about a semiclassical state in which a
single mode (either right- or left-moving) of density per-
turbation is excited, as a state in which one of the Fermi
wave numbers (−KF or KF ) is allowed to vary with the
space-time coordinates. From now on, and without loss
of generality, we shall assume only a right moving mode,
in which case the Fermi number KF becomes time and
space dependent, to be described by a function kF (x, t),
while −KF stays fixed. This heuristic picture translates
into the following ansatz for the Wigner function:

W (x, k, t) = θ(kF (x, t)− k)θ(k +KF ). (3)

We will see that Eq. (3) is a good approximation to the
Wigner function everywhere except the vicinities of the
shock points. Knowledge of the Wigner function allows
one to compute the density, as these two are related as
follows:

ρ(x, t) =

∫
W (x, k, t)

dk

2π
. (4)

Given initial conditions for the Wigner function, one
may compute it at later times making use of the evo-
lution equation, ∂tW (x, k, t) + ~k

m ∂xW (x, k, t) = 0. The
proof of this equation consists of the application of the
Schrödinger equation to the fermions in Eq. (2) and in-
tegration by parts. The initial value problem for the
evolution equation may be solved by the method of char-
acteristics, which yields

W (x, k, t) = W

(
x− ~k

m
t, k, 0

)
. (5)

FIG. 1. Multi-valued function kF (x, t) = mvF (x, t)/~ after
the shock. Inset shows the function at initial time.

Applying Eq. (5) to ansatz (3) one sees that kF (x, t) must
satisfy:

kF (x, t) = kF

(
x− ~

m
kF (x, t)t, 0

)
. (6)

This equation determines kF (x, t) implicitly, given the
initial conditions kF (x, 0).

The relation to the classical shock wave physics in one
dimensional hydrodynamics may be realized by exclud-
ing ~ from Eq. (6) with the transformation vF (x, t) =
(~/m)kF (x, t) and noticing that vF (x, t) is in fact a solu-
tion of ∂tvF (x, t) + vF (x, t)∂xvF (x, t) = 0. This Riemann
(or Riemann-Hopf) equation [6] is well known to give rise
to shock waves.

In the following we make use of the inverse function,
which is a solution of kF (xF , t) = k:

xF (k, t) = xF (k, 0) +
~
m
kt. (7)

If x′F (k, 0) is negative, there is always a positive time at
which ∂xF (k, t)/∂k = 0. This equation, together with
Eq. (7) determines the time evolution of points where
|∂kF (x, t)/∂x| = ∞. The divergence is a manifestation
of the shock phenomenon; it is also termed ’the gradient
catastrophe’. After the first time the function kF (x, t)
displays an infinite derivative, the solution to Eq. (6)
becomes multi-valued as shown in Fig. 1. Without loss
of generality, we assume that the multi-valued region is
bounded by two points, x−(t) and x+(t), between which
the function kF (x, t) has three branches, enumerated by

k
(1)
F (x, t) < k

(2)
F (x, t) < k

(3)
F (x, t).

Regardless of the fact that kF (x, t) is multi-valued,
initial conditions such as (3) lead to a Wigner function
which is 1 in a region of phase space between the curve
kF (x, t) and the horizontal line k = −KF , while the
Wigner function is 0 outside this region. Here the curve
of kF (x, t) is understood to contain all the branches of the
function, just as the curve described in the right panel of
Fig. 1.
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The integral in Eq. (4) may easily be performed to
obtain the density. The result is:

2πρcl(x, t) = KF + k
(3)
F (x, t)−k(2)

F (x, t)+k
(1)
F (x, t), x ∈ I

2πρcl(x, t) = KF + kF (x, t), x /∈ I, (8)

where I = [x−(t), x+(t)] denotes the spatial segment of
multi-valued behavior of kF . The superscript cl in ρcl

denotes that (8) gives only the result of classical theory,
on which we want to improve in the vicinities of points
x = x±.

Next to x−(t) and x+(t) two branches of the function

kF (x, t) meet. Explicitly, k
(1)
F and k

(2)
F (or k

(2)
F and k

(3)
F )

become equal to each other at x+(t) (or, respectively, at
x−(t)), e.g.,

k
(1)
F (x+(t), t) = k

(2)
F (x+(t), t) ≡ k+

F (t).

The functions k±F (t) are solutions of the equation

∂xF (k, t)/∂k = 0. The three branches k
(1,2,3)
F display a

square-root behavior, see Fig. 1, near respective meeting
points x±(t), e.g.,

k
(1,2)
F − k+

F (t) = ∓α+(t)
√
x+(t)− x+ . . . , (9)

while k
(3)
F (x, t) is regular at x = x+(t).

Near the branch meeting points, ρ(x, t) takes the ap-
proximate form:

ρcl(x, t)− ρcl(x±(t), t) ' ±α
±(t)

π

√
∓(x− x±(t)) . (10)

These square-root kinks (which may be observed in Fig. 2
next to x−(t) and x+(t), albeit rounded by quantum cor-
rections) point to the non-analytical behavior of ρ(x, t)

FIG. 2. A typical density profile. The classical trailing and
leading shock points are x−(t) and x+(t), respectively; cf.
Eq. (10). The quantum ripple effect is amplified in the deriva-
tive ∂xρ(x, t). Inset: Normalized derivative, −∂xρ/κ̃2, as a
function of δx = x − x+(t) in the region next to x+(t), see
Eq. (21).

at x = x±(t). The corresponding coefficients are de-
termined by initial conditions, [α±(t)]2 = 2(∂2

kxF )−1.
According to Eq. (7), the derivative ∂2

kxF (k, t) =
d2xF (k, 0)/dk2 at fixed k is time-independent. To find
α±(t) one should evaluate the said derivative at k =
k±F (t).

Our goal is to evaluate quantum corrections to the clas-
sical density profile (10). To that end we start with
introducing a family of many-body coherent states of
free fermions [11] with smooth density profiles. We
are interested in times t � tLR, so it is sufficient
to include only, say, right-movers in the considera-
tion. The corresponding fermion density operator is
ρ̂R = ψ(R)†(x)ψ(R)(x), and the field operators con-
tain only Fourier harmonics with positive wave vector,
ψ(R)(x) =

∫
k>0

ψke
ikx dk

2π . The coherent states, |Ψ〉 =

ei
∫

Φ(x)ρ̂R(x)dx|0〉, are parametrized by the function Φ(x)
with a transparent meaning, 2πρcl = KF + 2πΦ′(x).

The standard bosonization methods [11] yield

〈Ψ|ψ†(x1)ψ(x2)|Ψ〉 =
ei(Φ(x1)−Φ(x2))

i2π(x1 − x2)
, (11)

where we customarily dispensed with the additive Φ-
independent term which formally vanishes in the large-
KF limit, KF |x1 − x2| → ∞.

To evaluate the Wigner function, W (x, k, 0), we per-
form a gradient expansion Φ(x + y/2) − Φ(x − y/2) ≈
(k′′F (x)y3/24) + kF (x)y in the exponent of Eq. (11) and
then substitute the result in Eq. (2). The integration
over y in Eq. (2) then yields [12]:

W (x, k, 0) ≈ Ai1

(
22/3κ(x, 0)(k − kF (x, 0))

)
, (12)

where

Ai1(x) =

∫ ∞
s

Ai(s′)ds′ =

∫
e
i
(

q3

3 +qx
)
dq

2πiq
, (13)

and κ is the t = 0 value of

κ(x, t) = |∂2
xkF (x, t)/2|−1/3 . (14)

The function Ai1(s) changes monotonically from 1 at s→
−∞ to 0 at s → ∞ on the scale |s| ∼ 1. Therefore at
large κ(x, 0) the Wigner function, Eq. (12), approaches
its classical limit, W (x, k, 0) ≈ θ(kF (x) − k), as applied
to right-movers, which confirms the ansatz (3).

Estimating κ(x, 0) with the help of Eq. (1) as κ ∼
∆ρ−1/3∆x2/3, we see that smearing of the Fermi step-
function, as described by Eq. (12), is smaller by the
parameter (∆N)−2/3 than the shift ∼ ∆N/∆x of the
Fermi wave vector kF (x) from its equilibrium value. The
same semiclassical parameter is needed to justify the
gradient expansion which we used to derive Eq. (12).
To assess the accuracy of that approximation, we may
consider the correction, δW , to Eq. (12) resulting from
the sub-leading term in the gradient expansion. An or-
der of magnitude estimate yields δW/W ∼ ∆N−2/3 at
|k − kF (x)| . 1/κ(x, 0).
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We wish now to propagate the initial conditions (12)
in time. It will be more convenient, however, first to
switch to a representation involving only the inverse func-
tion, xF (k, t) rather than kF (x, t). This is achieved by
performing a Taylor expansion, kF (x, 0) − k = [x −
xF (k, 0)]/x′F (k, 0) + . . . , and retaining only its first term
in the argument of the Ai1 function in Eq. (12). This
is justified at x − xF (k, 0) � ∆x, and at the same time
sufficient to allow the Wigner function to vary between
its limiting values of 0 and 1. We also use the identity

∂2
xkF (x, 0)

∣∣
x=F (k)

= − x′′F (k,0)
x′F (k,0)3 in the definition of κ(x, 0),

see Eq. (14), to finally transform Eq. (12) to:

W (x, k, 0) ≈ Ai1

(
22/3κ̃(k)(x− xF (k, 0))

)
. (15)

Here

κ̃(k) = κ̃(k, t) =
∣∣∂2
kxF (k, t)/2

∣∣−1/3
(16)

is independent of time, according to Eq. (7).
We are now ready to compute the Wigner function

W (x, k, t) and quantum corrections to density at later
times. Combining Eqs. (5), (7), and (15) we easily find:

W (x, k, t) ≈ Ai1

(
22/3κ̃(k)(x− xF (k, t))

)
. (17)

Given the validity of Eq. (17) for all times, it remains
only to integrate it over k to obtain the density. Using
the representation (13) of Ai1, one arrives at:

∂xρ(x, t) ≈
∫
e
i

[
|x′′F (k)|

24 q3+q(x−xF (k,t))

]
dq

2π

dk

2π
. (18)

Next we implement a gradient expansion of function
xF (k, t) around a branch meeting point, x±(t). Using
this expansion in Eq. (18) and changing variables there
to K = k + q

2 and Q = k − q
2 , we derive

∂xδρ
±(x, t) (19)

≈
∫
e
i

[
|x′′F (k

±
F

(t))|
6 (K3−Q3)+(x−x±(t))(K−Q)

]
dQ

2π

dK

2π
.

Note that here we are computing only the singular con-
tribution δρ±(x, t) next to the branch meeting points,

δρ±(x, t) = ±
(
ρ(x, t)− ρcl(x±(t), t)

)
, (20)

rather than full density ρ(x, t). Integration over Q and
P in Eq. (19) factorize, leading to the result:

∂xρ
±(x, t) ≈ −κ̃±(t)2

[
Ai(κ̃±(t)δx±)

]2
. (21)

Here the distances, δx± = ∓(x − x±(t)), are measured
from the classical shock points, and inverse length scales
κ̃±(t) are related to the parameters of the classical so-
lution κ̃±(t) = (α±(t))2/3, cf. Eq. (10). The density
gradient (21) exhibits pronounced oscillations, “quantum

ripples” in the vicinity of the classical shock points, see
the inset in Fig. 2. At times t & tS , the distance between
the shock points is x+(t)−x−(t) ∼ ∆x. The characteris-
tic length scale for the ripples 1/κ̃±(t) ∼ ∆x/(∆N)2/3

is parametrically smaller. Making use of the identity
Ai′′(x) = xAi(x), one may integrate Eq. (21) to find

δρ±(x, t) (22)

' κ̃±(t)
{[

Ai′(κ̃±(t)δx±)
]2−(κ̃±(t)δx±)Ai2(κ̃±(t)δx±)

}
.

Equation (22) together with the derivative (21) is the
main result of this Letter. A typical plot of ρ(x) is shown
in Fig. 2, with the inset showing the graph of ∂xδρ

±(x)
around a branch meeting point.

Some elements of the solution and results which we
developed for the one-dimensional free-fermion system
may shed light on shock waves in higher dimensions and
in one-dimensional quantum liquids of interacting parti-
cles.

The generalization onto a 3D and 2D free Fermi gases
with a unidirectional density modulation and strongly-
anisotropic initial momentum distribution is straightfor-
ward. Ripple effect should weaken in the case of a more
isotropic momentum distribution. Experimental tech-
niques to study the evolution of initial perturbations are
available in such quasi 1D geometries [13, 14].

By continuity, the results obtained in this work are
applicable to one-dimensional fermions with weak inter-
particle repulsion or attraction. Furthermore, a combi-
nation of the universal nonlinear Luttinger liquid theory
[15] with the free-fermion theory developed here points
to a similarity between the shock waves in generic one-
dimensional liquids of interacting fermions or bosons and
in a free fermion system. The nonlinear Luttinger liquid
description [15] is valid for small and smooth perturba-
tions. Within that description, the interaction renormal-
izes the velocity, effective mass, and wave functions of
the fermionic quasiparticles representing the excitations;
the nonlinear dispersion relation of the quasiparticles is
retained, allowing for shocks. Furthermore, the pair col-
lisions of quasiparticles are ineffective in one dimension,
thus strongly suppressing the dissipation compared to
gases in higher-dimensions [3]. The formation of oscil-
latory patterns in non-dissipative shock wave physics is
quite general, and thus we expect that interaction will
not change the basic picture described here, namely that
of oscillatory patterns following the formation of shocks.

The exact form of the oscillations in strongly inter-
acting systems is beyond the scope of this letter (some
results are available for long range interaction [10] or in-
teracting bosonic systems [13, 16]). The dynamics of
bosons with short-range repulsion in one dimension (the
Lieb-Liniger model [17, 18]) is in fact directly related to
the dynamics of fermions described by the nonlinear Lut-
tinger liquid theory [3].

Numerics for free fermions was performed recently in
Ref. [19]. The shape of the ripples in the entire interval
x− < x+ is different from our predictions, probably be-
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cause of a relatively small value of ∆N employed in the
numerics [19]. Finally, there is quite close analogy be-
tween the structure of ripples we obtained with the ones
predicted for one-dimensional spin liquids [20].
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