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We study Hamiltonians which have Kitaev’s toric code as a ground state, and show how to construct a Hamil-
tonian which shares the ground space of the toric code, but which has gapless excitations with a continuous
spectrum in the thermodynamic limit. Our construction is based on the framework of Projected Entangled
Pair States (PEPS), and can be applied to a large class of two-dimensional systems to obtain gapless “uncle
Hamiltonians”.

Introduction.—Since its introduction by Wen in the 80’s,
topological order has become a central subject of research
both in the condensed matter and quantum information com-
munities. The toric code, a many-body spin state originally
introduced by Kitaev in the context of topological quantum
computing [1], represents a paradigmatic example of a state
with topological order. It is the ground state of a local, frustra-
tion free Hamiltonian HTC defined on a two-dimensional lat-
tice, whose degeneracy depends on the topology of the space
on which it is defined. This Hamiltonian is gapped, and it ex-
hibits (abelian) anyonic excitations. The toric code also pos-
sesses long-range entanglement (i.e., it cannot be created by
local unitary operations out of a product state), and its entan-
glement entropy contains a universal part which can serve as
a signature of its topological properties. All these properties
are robust against local perturbations [2, 3]. Apart from that,
it can be considered as an error correcting code with non-local
encoding but local syndroms, and might therefore be useful as
a quantum memory or for fault tolerant quantum computing.

The toric code can also be efficiently described in the lan-
guage of tensor networks. As other states with topological
order, it is a Projected Entangled Pair State (PEPS) of very
low bond dimension, D = 2 [4, 5]. PEPS generalize Matrix
Product States (MPS) [6, 7] to spatial dimensions higher than
one, obey the area law for the entanglement entropy, and are
believed to efficiently represent the ground states of local spin
and fermionic Hamiltonians in lattices [8, 9]. Conversely, for
any PEPS one can construct a frustration free parent Hamil-
tonian for which it is the ground state [5], which allows us
to relate a given exotic quantum many-body state to physical
Hamiltonians. In fact, HTC is exactly such a parent Hamil-
tonian for the toric code, and using this construction in the
PEPS formalism, one can readily uncover some of its most
distinct properties [10]. In the same way, one can build parent
Hamiltonians for many other strongly correlated states, such
as string-net models [11], the AKLT state [12], resonating va-
lence bond states, and others. In most of these cases, the re-
sulting Hamiltonians are gapped above the ground state space,
which makes them robust against local perturbations [13].

In this paper, we introduce an alternative way to construct
Hamiltonians corresponding to MPS and PEPS, which we

term uncle Hamiltonians. The uncle Hamiltonian differs sig-
nificantly from the parent Hamiltonian. While both Hamilto-
nians share the same ground state subspace by construction,
their spectra are extremely different: As we prove, the uncle
Hamiltonian is gapless and has a continuous spectrum in the
thermodynamic limit, which is in sharp contrast to the gapped
parent Hamiltonian. Our construction exploits the fact that
the link between tensor networks and their associated parent
Hamiltonians is not robust under generic perturbations [14]
for a large class of interesting MPS and PEPS, in particular
for systems with symmetry breaking and topological order.

Our findings are interesting from several perspectives.
First, they show that the association between PEPS and
Hamiltonians is more ambiguous than generally believed.
Second, it illustrates that care must be taken when trying to de-
fine topological order in terms of properties of the ground state
alone, such as its topological entropy [15, 16], as the same
quantum state can appear as a ground state of both a gapped
(topological) and a gapless (unstable) Hamiltonian. Finally, it
also provides a clear example of a gapless system which nev-
ertheless does not exhibit any critical (or even finite-range)
correlations.

Uncle Hamiltonian for the GHZ state.—We start by ex-
plaining our construction for the GHZ state in order to intro-
duce the key concepts.

A state |ψ〉 ∈ (Cd)⊗L is called a (translationally invariant)
Matrix Product State (MPS) if it can be written as

|M(A)〉 =
∑

i1,...,iL

tr[Ai1 · · ·AiL ]|i1, ..., iL〉,

where the Ai are D × D matrices, D being called the bond
dimension, L is the number of sites and d the physical dimen-
sion at each site. These matrices can be thought of as a tensor
A with three indices (Ai)αβ , two of them (α, β) being the
matrix indices (“virtual indices”) and the third index (i) cor-
responding to the physical spin (“physical index”).

The unnormalized GHZ state on n particles can be ex-
pressed as an MPS as follows:

|GHZ〉 =
∑

i1,...,in

tr[Ai1 · · ·Ain ]|i1...in〉 = |00 . . . 0〉+|11 . . . 1〉,



2

where ij ∈ {0, 1} and A0 = ( 1 0
0 0 ), A1 = ( 0 0

0 1 ).
A parent Hamiltonian H =

∑
i hloc of an MPS is obtained

as a sum of local orthogonal projections hloc = hi−1,i,i+1

acting on three consecutive sites, each of them with kernel [7,
10].

span
{ ∑
i1i2i3

〈i|Ai1Ai2Ai3 |j〉|i1i2i3〉, i, j ∈ {0, 1}
}
;

for the GHZ state, kerhloc = span{|000〉, |111〉} [19]
The parent Hamiltonian H is frustration free since its

ground space is the intersection of these kernels. The GHZ
state lies in the ground space, which is 2-dimensional and is
spanned by the states |0〉⊗n and |1〉⊗n, and the Hamiltonian
has an spectral gap between the ground space and the rest of
energy levels.

Let us now perturb the GHZ state in the MPS representa-
tion, by considering small random linear perturbations of the
matrices Ai,

Aε0 = A0 + ε

(
a0 b0
c0 d0

)
, Aε1 = A1 + ε

(
a1 b1
c1 d1

)
.

The parent HamiltonianHε corresponding to this new MPS
is the sum of a new local projector hεloc with

kerhεloc = span
{ ∑
i1i2i3

〈i|Aεi1A
ε
i2A

ε
i3 |j〉|i1i2i3〉, i, j ∈ {0, 1}

}
.

This kernel is spanned by the vectors

|000〉+O(ε) ,

|111〉+O(ε) ,

ε
[
b0|000〉+ (b0 + b1)(|001〉+ |011〉) + b1|111〉

]
+O(ε2) ,

ε
[
c0|000〉+ (c0 + c1)(|100〉+ |110〉) + c1|111〉

]
+O(ε2) ,

or equivalently by the vectors

|000〉+O(ε) , |0+1〉+O(ε) ,

|111〉+O(ε) , |1+0〉+O(ε) ,

as long as b0 + b1 6= 0 and c0 + c1 6= 0, which holds for
almost every perturbation. [|0+1〉 denotes |0〉|+〉|1〉, etc.,
where |+〉 = (|0〉+ |1〉)/

√
2]

As we let ε tend to 0, this local projector does not converge
to the original hi−1,i,i+1. Instead, it converges to a projec-
tor with kernel span{|000〉, |0+1〉, |1+0〉, |111〉}, which we
denote by h′loc = h′i−1,i,i+1 for the corresponding sites. The
resulting global Hamiltonian H ′ =

∑
i h
′
i−1,i,i+1 is the one

we will call the uncle Hamiltonian. As kerhloc ⊂ kerh′loc,
H ′ has all the ground states of H and is thus frustration free.
On the other hand, the presence of the vector |0+1〉 in the
ground state subspace also allows for zero-momentum super-
positions of “domain walls” between domains of 0’s and 1’s,
· · ·+ | . . . 001 . . . 〉+ | . . . 011 . . . 〉+ · · · , and correspondingly
for |1+0〉. However, it is easy to see that these configura-
tions cannot exist in the ground space given periodic bound-
ary conditions[20], and thus, the ground state subspace for

FIG. 1: Construction of the uncle Hamiltonian. Any MPS and PEPS
tensor A induces a corresponding parent Hamiltonian hloc. The un-
cle Hamiltonian is constructed by perturbing A → A+εP , comput-
ing its parent Hamiltonian hεloc, and finally taking ε to zero. As we
show, the resulting uncle Hamiltonian h′

loc = limhεloc can be very
different from the parent Hamiltonian hloc.

H ′ is the same as for the parent Hamiltonian H . On the other
hand,H ′ is gapless in the thermodynamic limit, and moreover,
its spectrum is the whole positive real line R+. This can be
proven utilizing the “domain wall superpositions” mentioned
above, by using the unnormalized states

|ϕr,A〉 =
∑

1≤i<j≤A,
2≤j−i≤r

| . . . 0〉|010 . . . 0i11 . . . 1j0 . . . 0A〉|0 . . . 〉,

(1)
where the superscripts indicate the position of the correspond-
ing site. The |φr,A〉 are orthogonal to the ground space and
have energy as close to C/(r − 1) as desired if we allow both
the chain length and A grow, for some given constant C and
any r, which implies the existence of low eigenvalues tending
to 0. The locality of the uncle Hamiltonian renders it pos-
sible to concatenate approximate eigenvectors in the thermo-
dynamic limit and therefore to conclude that the sum of two
elements in the spectrum is also in the spectrum, which finally
allows to prove that the spectrum of H ′ becomes continuous
in the thermodynamic limit, σ(H ′) = R

+. Moreover, the
spectra of H ′ acting on finite size chains tend to be dense on
the positive real line as the size of the chain grows. A detailed
analysis is given in Ref. [17], where it is also shown that in one
dimension, this behavior occurs for any MPS with degenerate
parent Hamiltonian (i.e., non-injective MPS). In contrast, for
systems with unique ground states (i.e., injective MPS) the
parent Hamiltonian is robust under perturbations. However,
one can still construct gapless uncle Hamiltonians by taking
non-injective MPS representations of these states, but in this
case the similarities between parent and uncle Hamiltonians
are weaker [17].

The toric code as a PEPS.—Projected Entangled Pair States
(PEPS) are the natural generalization of MPS to general lat-
tices. For simplicity, we restrict to square lattices. Then, the
three-index tensors A have to be replaced by five-index ten-
sors, with four virtual indices and one physical index. The
virtual indices of each tensor are contracted with the corre-
sponding indices of the adjacent tensors as depicted in Fig. 2,
where connected lines denote the contraction of indices. The
physical index will be denoted by a black dot in the upper left
corner of each tensor, and should be thought of as a tensor leg
pointing out of the paper.
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FIG. 2: Graphical description of PEPS.

Under certain conditions on the tensors [10], a parent
Hamiltonian can be constructed by considering local projec-
tions hloc for every 2× 2 region onto the orthogonal comple-
ment of the space

kerhloc =
{ BA

C D

b

, b boundary tensor
}

(2)

(spanned by all the possible boundary tensors b), and sum-
ming these local projectors to construct a global Hamiltonian.
The ground space of this parent Hamiltonian is the intersec-
tion of the kernels of the local projectors.

A PEPS representation of the toric code can be obtained by
considering a PEPS with bond dimension two, and associating
the virtual space with the physical space at every site, Cd =
(C2)⊗4. The tensor E at every site is then the orthogonal pro-
jection onto the space of spin configurations with even parity
in the virtual space, E|ijkl〉 = (1 + (−1)i+j+k+l)|ijkl〉/2.

The ground space of the parent Hamiltonian for this PEPS
is locally equivalent to the toric code. A detailed treatment of
this relationship can be found in [10].

Uncle Hamiltonian for the toric code.—Let us now derive
the uncle Hamiltonian for the toric code. This will be done as
for the GHZ state, cf. Fig. 1: We perturb the toric code ten-
sors, derive the corresponding parent Hamiltonian, and take
the limit of vanishing perturbations. The specific perturbation
we consider, which we denote by O, is the projection comple-
mentary to E, O = I − E, the projection onto the space of
odd spin configurations.

The 2 × 2-site local Hamiltonian hεloc is obtained from
Eq. (2) by letting each of the four tensors be E + εO. In
the limit ε → 0, we obtain a new projector h′loc = limhεloc
different from the local projector hloc we started with: The
new local Hamiltonian h′loc is the projector onto the orthogo-
nal complement of E22 +O22 = kerh′loc, where

O22 =
{ ∑

posO

EO

E E

b

, b boundary tensor
}
, (3)

and the sum runs over the positions which the single O tensor
above may occupy among the four tensors appearing. E22

is defined analogouly, but contains only E tensors. Note
that E22 will only be non-vanishing for even parity bound-
ary conditions b, whereas for O22 this will only be the case
for odd boundary conditions. The space E22 plays the role
span{|000〉, |111〉} did in the uncle Hamiltonian of the GHZ
state, and O22 plays the role of span{|0+1〉, |1+0〉}. Intu-
itively, while E22 only supports states without anyonic exci-
tations, O22 allows for configurations with exactly one anyon
which is distributed in a uniform superposition. As with the
domain walls in 1D, the idea is that such configurations cannot
appear in the ground state subspace as anyons come in pairs,
but two excitations are not allowed to meet; however, such
configurations with delocalized anyon pairs will have low en-
ergy.

The new uncle Hamiltonian H ′ is constructed again as the
sum over all 2 × 2 regions of the local projector h′loc. When
considering an n ×m contractible region R, and the sum of
the local projectors acting entirely in this region, one finds that
the kernel of this sum has the same structure as the kernel of
a single projector:

ker
(∑
R

h′loc
)
=
⋂
R

kerh′loc = Enm +Onm ,

with definitions for Enm and Onm similar to Eq. (3); the de-
tailed proof is given in Appendix A. However, theO subspace
vanishes when considering the whole lattice and imposing pe-
riodic boundary conditions, as those are automatically even
(see Appendix A). Therefore, the global ground space of the
new Hamiltonian is the same as the ground space of the toric
code parent Hamiltonian.

Spectrum of the uncle Hamiltonian.—Let us now show that
the uncle Hamiltonian for the toric code is gapless with con-
tinuous spectrum in the thermodynamic limit. As we did with
the GHZ uncle Hamiltonian, we will consider a family of low
energy states which are orthogonal to the ground space. Given
any integer value of r, we may take two contractible rectan-
gles R1 and R2 of size r × r which are separated by at least
two sites. We construct a family of unnormalized states |φr〉
by placing at these two regions the tensor Orr [cf. Eq. (3)],
and setting all remaining tensors to E:

|φr〉 =
∑

pos O1∈R1
pos O2∈R2

. (4)

This is, each of the gray regions contains exactly oneO tensor
and E’s otherwise, and the sum runs over the position of the
two O’s.

The norm of all these summands is the same, say C. This
value depends only on the total dimension of the lattice. The
norm of any of these |φr〉 is Cr2 (since the summands are
mutually orthogonal and there are r4 of them), but only the
h′loc which overlap with the boundary of these regions con-
tribute a positive energy. There are only 8r of them, 4r act-
ing on the left and 4r acting on the right region. For each of
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them at most 2r2 summands from (4) add any energy: there
are at most two ways O can overlap with the Hamiltonian
term, and the r2 comes from the O in the other region. Hence
〈φr|H ′|φr〉 ≤ C2O(r3), and the energy 〈φr|H ′|φr〉/〈φr|φr〉
of these states decreases as O(1/r). Altogether, this proves
that H ′ is gapless.

In order to prove that the spectra of these Hamiltonians tend
to become dense in the positive real lineR+, we fix one of the
dimensions of the system—let us choose the vertical one—
and let the other go to infinity. This results in an MPS-like
problem, in which we can take the thermodynamic limit.

Since the vertical dimension is fixed – let us say its value
is N – the regions used to construct the states |φr〉 from (4)
cannot grow indefinitely. We can consider instead similar un-
normalized states |φr,N 〉, coming from r×N regions, to prove
the existence of a suitable set of elements in the spectrum {λi}
tending to 0, from which it can be shown that any finite sum
of these values also lies in the spectrum. These finite sums are
dense in [0,∞), which therefore coincides with the spectrum
due to its necessary closedness.

The same values
∑
λi lie close to eigenvalues of the uncle

Hamiltonian for some finite sized –but big enough– lattices.
Hence the spectra of the finite sized uncle Hamiltonians tend
be dense in [0,∞).

The analogue proof for the uncle Hamiltonian of the GHZ
is detailed in [17], and a sketch of the steps adapted to the toric
code can be found in Appendix B.

Conclusions.—In this paper, we have used the framework
of PEPS to study different ways in which strongly correlated
quantum systems can appear as ground states of local Hamil-
tonians. In particular, we have introduced the uncle Hamil-
tonian of a PEPS, which contrasts with the usually consid-
ered parent Hamiltonian. The uncle Hamiltonian is obtained
by perturbing the PEPS tensors, computing the corresponding
parent Hamiltonian, and then taking the perturbation to zero.
As parent Hamiltonians of systems with degenerate ground
states are not robust under perturbations of the tensors, the re-
sulting uncle Hamiltonian behaves very different from the par-
ent Hamiltonian: While the parent and the uncle Hamiltonian
share the same ground state space, the uncle is gapless with
a continuous spectrum in the thermodynamic limit, thus be-
having very differently. We have demonstrated our approach
with Kitaev’s toric code: The resulting uncle Hamiltonian has
the toric code state as its ground state, however, it is gapless
and thus does not yield a topologically protected system. This
both demonstrates the ambiguity in the association of PEPS
with local Hamiltonians, and the subtleties one has to take
care of when identifying topological order from the ground
state rather than the properties of the interaction.
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