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Using field-theoretic techniques, we study solvation of salt ions in liquid mixtures, accounting
for the permanent and induced dipole moments, as well as the molecular volume of the species.
With no adjustable parameters, we predict solvation energies in both single-component liquids and
binary liquid mixtures that are in excellent agreement with experimental data. Our study shows
that the solvation energy of an ion is largely determined by the local response of the permanent
and induced dipoles, as well as the local solvent composition in the case of mixtures, and does not
simply correlate with the experimental bulk dielectric constant. In particular, we show that in a
binary mixture, it is possible for the component with the lower bulk dielectric constant but larger
molecular polarizability to be enriched near the ion.

PACS numbers:

Salt ions are essential in biology, colloidal science, electrochemistry, and many other areas of science and engineering.
For example, protein stability and solubility are well known to be significantly affected by the addition of salts [1]. In
the energy arena, there is much current interest in lithium salt-doped polymers as new battery materials [2].
The effects of salt ions on the properties of soft matter can often be understood in terms of the translational

entropy and the electrostatic screening. However, recently it has been shown that the solvation energy of the salt
ions can significantly affect the phase behavior [3, 4] and interfacial properties of liquid mixtures [5–8]. For example,
Ref. [4] showed that the dramatic increase in the order-disorder transition temperature of (polyethylene oxide)-b-
polystyrene (PEO-PS) block copolymers upon adding a small amount of lithium salt can be explained on the basis of
the preferential solvation energy of the anions. Physically, the tendency of an ion to be preferentially solvated by the
more polarizable component in a two-component mixture provides a significant driving force for phase separation [3],
as well as differential adsorption between the cation and anion at the interface [5–8].
While a very large body of theoretical literature exists for ion solvation in single-component liquids (see Refs. [9–

13] for comprehensive reviews, and Ref. [14] for recent developments of ion force fields for solvation.), we are not
aware of any theory that predicts the composition dependence of ion solvation in liquid mixtures. In Refs. [3–
6, 8], the solvation energy is modeled phenomenologically at the linear dielectrics level by a crude Born expression:
∆GBorn = [(ze)2/(8πaǫ0)](1/ε− 1), where e is the elementary charge, a is the radius of the ion and z is the valency.
The local dielectric constant is taken to be given by a simple composition weighted average ε = εAφA + εBφB . The
Born model has the virtue of being simple and intuitive in capturing the essential qualitative physics of solvation.
However, quantitatively, the Born expression is known to be a poor description of solvation of small ions [11], even in a
one-component, uniform liquid, because of the dielectric saturation (due to saturated dipole orientation) [15–17] near
the ion. In a spatially inhomogeneous liquid or mixture, there is the additional effect of local density or composition
response to the electric field of the ion. For example, the more polarizable component is expected to be enriched near
the ion relative to its bulk composition.
In this Letter, we study the solvation of salt ions in liquid mixtures using a field-theoretic molecular approach. Our

approach draws upon several recent field theoretical studies that treat the solvent as a lattice gas of dipoles [18–21].
In particular, Koehl et al. developed a Poisson-Boltzmann-Langevin approach for ion solvation in aqueous solutions
[19–21] taking into account of the permanent dipoles of water molecules and density variation near the ions; the
theory contains adjustable parameters that are optimized to model aqueous systems. In earlier work, Warshel and
coworkers [22, 23] studied charge solvation of biomolecules in aqueous solution. Their work includes both the induced
and permanent dipoles, but these two types of dipolar interactions are treated differently. Our approach is similar in
spirit, but differs from previous works in several important respects in the model and in the focus. First, instead of
a lattice gas model as in Refs. [18–21], we consider a continuum model in which the liquid nature of the medium is
accounted for by incompressibility and the volume of the molecules. Second, we include the molecular polarizability
and permanent dipoles using the same unified framework. Third, in comparison to the systems considered by Warshel
and coworkers where the molecular species have a fixed spacial distribution, we account for the translational degrees
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of freedom and the associated effects of the entropy of mixing in a liquid mixture. Furthermore, our theory contains
no adjustable parameters. Finally, we focus on several new physical effects arising from the reorganization of the
mixture around the solvated ions. In particular, we show that for some combinations of the intrinsic dipole moment
and molecular polarizability, the component having a large molecular polarizability but lower bulk dielectric constant,
is enriched near the ion, and that the identity of the enriched component can switch upon changing the valency and/or
radius of the ion.
We consider an ion fixed at the origin immersed in a binary liquid mixture of NA type-A molecules and NB type-B

molecules in a volume V . The ion is modeled as a cavity of radius a with a point charge ze at the center. The center

of mass of the i-th molecule of species s is denoted by ~Rsi; its dipole moment is ~psi. For convenience, we work in the
grand canonical ensemble; the partition function is

Z =
∑

NA,NB

∏

s=A,B

λNs

s

Ns!

∫ Ns∏

i=1

D ~Rsid~psiδ

[∑

s

vsn̂s(~r)

− 1

]
exp

[
−
1

2

∫
d3rd3r′ ρ̂(~r)v(~r − ~r ′)ρ̂(~r ′)− VH

]
, (1)

where v(~r − ~r ′) = e2/(4πǫ0|~r − ~r ′|) is the Coulomb potential in vacuum, λs is the fugacity of dipolar molecule s,
and vs is the molecular volume of solvent s (s = A, or B). We use kBT as the energy unit. The hard-core repulsion
between the molecules is modeled by the δ-function in Eq. (1) which enforces incompressibility for the liquid mixture

outside of the ion, with n̂s(~r) =
∑Ns

i=1 δ(~r −
~Rsi) being the number density for species s. The total charge density

ρ̂(~r) is given by [24]

ρ̂(~r) = zδ(~r) +
∑

s=A,B

ρ̂s(~r)

ρ̂s(~r) = −

Ns∑

i=1

~psi · ∇δ(~r − ~Rsi), (2)

where ρ̂s(~r) is the charge density due to the dipoles. The dipoles on the molecules consist of an intrinsic (permanent)
contribution ps and a contribution induced by the electric field. Thus, the Coulomb interaction in Eq. (1) includes the
dipole-dipole interaction between the solvent molecules. Within the harmonic approximation, we ascribe a deformation
energy for the induced dipole as [18, 25]

VH =
∑

s=A,B

Ns∑

i=1

1

2αs

(|~psi| − ps)
2, (3)

where αs is the molecular polarizability of species s.
In this work, we consider liquid components that are fully miscible. Thus, we ignore any differential energetic inter-

actions (besides the dipolar interactions) between the two liquid species in the mixture; these additional interaction
effects will be considered in future work.
Using standard field-theoretic techniques [26], we first integrate the solvent degrees of freedom. Ignoring an in-

consequential term from normalization in the the Hubbard-Stratonovich transformation, we write the free energy in
terms of field variables,

F =
1

8πl0

∫
d~r ψ(~r)∇2ψ(~r) + zψ(0)

−
∑

s=A,B

∫
d~r

[
ns(~r)ωs(~r) + λse

−ωs(~r)Is(~r)

]
(4)

In this equation, l0 = e2/(4πǫ0) is the vacuum Bjerrum length, ns and ωs are the density field and its conjugate field
for species s, respectively, and ψ is the electrostatic potential scaled by the elementary charge. The function Is(~r) is

Is(~r) = 4π

∫ ∞

0

dps p
2
se

− 1

2αs
(ps−p

s
)2 sinh[ps|∇ψ(~r)|]

ps|∇ψ(~r)|
. (5)

Extremizing the free energy functional with respect to the field variable ψ(~r), we obtain,

∇ ·
[
ε(~r)∇ψ(~r)

]
= −4πl0zδ(~r). (6)



3

Eq. (6) is just the Poisson equation for the solvated ion, where ε(~r) can be identified as the local dielectric function
given by,

ε(~r) = 1 + 4πl0
∑

s=A,B

λse
−ωs(~r)

∫
d~ps e

− 1

2αs
(|~ps|−p

s
)2

× p2sF (ps|∇ψ(~r)|). (7)

Fs is related to the Langevin function, L(x) = 1/ tanhx− 1/x, by F = L(x) sinh x/x2. Similarly, extremization with
respect to other field variables leads to a set of equations for the incompressibility

1 =
∑

s=A,B

ns(~r)vs

ns(~r) = λs e
−ωs(~r)Is(~r)

ωB(~r) =
vB
vA
ωA(~r). (8)

Details of the derivation can be found in the Supplementary Materials [27]. Eqs. (6)-(8) constitutes a modified
Poisson-Boltzmann (PB) equation, in which the incompressibility of the fluid is reflected through the conjugate field
ωs(~r) associated with the volume of the solvents. For easy reference, we shall refer to our theory or Eqs (6)-(8) as
the Dipolar Self-Consistent Field Theory (DSCFT). Without loss of generality, λs can be absorbed into ωs, so we set

λs = 1. From Eq. (6) we identify the electric field and electric displacement respectively as ~E(~r) ≡ −∇ψ(~r), and
~D(~r) ≡ ε(~r) ~E(~r).
Because of the spherical symmetry, Eq. (6) reduces to dψ(r)/dr = −zl0/[ε(r)r

2] by integrating once with respect
to the radial distance r. This equation is to be solved together with Eqs. (7) and (8).
The solvation energy upon transferring an ion from vacuum to a dielectric medium is given by

∆G =
1

2

∫
d~r

[
~D(~r) · ~E(~r)− ~D0(~r) · ~E0(~r)

]
,

=
z2l0
2

∫
dr

[
1

ε(r)
− 1

]
1

r2
, (9)

where the subscript 0 denotes the corresponding variables in the vacuum. Note that ~D(~r) is unchanged from ~D0(~r)
because the charge remains constant. For spatially uniform bulk dielectric constant, Eq. (9) yields the standard Born
expression, Here, however, ε(r) is position-dependent and also depends on the electric field through Eqs. (6)-(7) in a
nonlinear manner.

TABLE I: Values of the solvent parameters [28] used in this work. ε is the experimental value of the bulk dielectric constant.
T = 293.15 K for methanol and T = 298.15 K for all other substances.

Solvent p
s
[D] αs [10−24 cm3] vs[Å

3] ε

Methanol 1.70 3.29 67.3 33

Acetonitrile 3.84 4.4 87.7 36.64

Chloroform 1.04 9.5 133.7 4.81

Ethyl acetate 1.78 8.62 163.0 6.08

We first illustrate our results with a single-component liquid, since many of the salient features of our theory are
more easily explained for this simpler case. In Fig. 1, we show the solvation free energy ∆G in methanol (MeOH)
for monovalent and divalent ions of varying radii. The molecular parameters for methanol as well as for other liquids
considered in this work, are listed in Table I. The agreement between the DSCFT and experiments is remarkably good
for both monovalent and divalent ions [29]. For comparison, we include the standard Born energy using the measured
value of the bulk dielectric constant given in Table I, which clearly shows substantial deviation from the experimental
data, particularly at small ion radii and for divalent ions. Similarly good agreement is obtained between our DSCFT
results and experimental data for ions in ethanol, 1-propanol, acetone, and acetonitrile. Even for water, which is
complicated by the presence of hydrogen bonds, the theoretical values are within 20%− 35% of the experimental data
for the monovalent ions, and within 3% − 12% for the divalent ions (in both cases, the theory underestimates the
solvation energy with more negative values).
As in previous work Refs. [17, 30], our calculation shows that ε(~r) has a sigmoidal shape as a function of the

distance from the ion because of the dielectric saturation near the ion [31]. Because the primary contribution to the
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FIG. 1: The solvation free energy ∆G of monovalent ions (Li+, Na+, K+, Rb+, Cs+, Et4N
+, Me4N

+, Br−, I−, ClO−

4 , and
Cl−) and divalent (inset) ions (Ca2+, Zn2+, Cd2+, Pb2+, and Cu2+) with different effective ionic radius a [32, 33] in MeOH.
(a) � Experimental data for cations [9, 34–36], (b) — ∆G calculated by the DSCFT, and (c) −− the standard Born energy
∆Gst with the experimental value of the bulk dielectric constant.

solvation energy arises from the local dielectric function near the ion, which is much reduced from the bulk value, the
solvation energy is higher (less negative) than that predicted by the Born expression. Furthermore, while the Born
expression predicts that the solvation energy is more negative in a liquid with higher experimental bulk dielectric
constant than in one with lower experimental bulk dielectric constant, we find that it is possible to have a lower (more
negative) solvation energy in a liquid that has a lower bulk dielectric constant but higher polarizability. For example,
our calculation shows that ∆G for Na+ (a = 0.98 [Å]) in chloroform is slightly more negative (by ∼ 2 [kcal/mol]) than
in ethyl acetate, even though chloroform has a lower experimental bulk dielectric constant (4.81) than ethyl acetate
(6.08) (see Table I); this prediction awaits experimental validation.
We now consider ion solvation in a liquid mixture, starting with Ag+ ion (a = 1.15 [Å]) in a mixture of acetonitrile

(MeCN) and MeOH. The measured bulk dielectric constants of these two liquids are respectively 36.64 and 33 (see
Table I). Fig. 2 (a) shows the local composition as a function of the radial distance r from the Ag+ ion. Even though
the bulk composition of MeCN is quite low (0.0028), there is substantial enrichment of MeCN near the ion. In other
words, upon adding even a very small amount of the higher-dielectric component, the structure of the first solvation
shell is substantially altered. This result arises naturally from our DSCFT without assuming any mixing rule for the
bulk dielectric constant of the mixture.
In Fig. 2 (b), we show the transfer free energy ∆G∗ – defined as the solvation free energy change relative to the

pure MeCN liquid – as a function of the volume fraction of MeCN. Very good agreement between the theoretical
prediction and experimental data is seen. The rapid decrease in the transfer free energy with φMeCN is a consequence
of the local enrichment of this component near the ion. For comparison, we also include the result for the transfer
free energy as implied by the simple linear mixing rule for the dielectric constant of the mixture. This mixing rule,
together with the simple Born expression for the solvation energy implies the following expression for the transfer free
energy: ∆G∗ (φA) = [φA(∆GA+z2l0/(2a))

−1+φB(∆GB+z2l0/(2a))
−1]−1−∆GA−z2l0/(2a) where ∆Gs (s = A,B)

is the solvation energy in the pure liquids. That both the experimental data and our DSCF results lie considerably
below this expression reflects the local reorganization of the solvent composition around the ion.
While the qualitative behavior shown in Fig. 2 (a) is to be expected since MeCN has both a larger dipolar moment

and polarizability (and hence an overall higher experimental bulk dielectric constant) than MeOH, for some combina-
tions of the permanent dipole moment and molecular polarizability, it is possible that the component with the lower
experimental bulk dielectric constant is enriched near the ion. In Fig. 3(a), we show that the low-dielectric-constant
component chloroform (4.81) is enriched relative to ethyl acetate (6.08). This effect reflects the importance of molec-
ular polarizability in determining the solvation structure and energy in the mixture. To better understand this effect,
in Fig. 3(b) we show the change in the local dielectric function upon adding a small amount of chloroform. Because of
the higher polarizability of this component, it gets enriched near the ion and this enrichment decreases the strength
of the electrostatic field E(r) and gives rise to a non-monotonic behavior in the dielectric function ε(r) in the vicinity
of the ion.
More intriguingly, for a given binary mixture, it is possible that the identity of the locally enriched component can

switch depending on the valency and radius of the ion. For example, for a hypothetical 50:50 binary mixture with
parameter values (ps [D], αs [10−24 cm3], vs [Å3], ε) = (1.5, 1.0, 100, 3.4) and (1.2, 1.3, 100, 2.7), the component
having a larger molecular polarizability but lower bulk dielectric constant, becomes enriched near the ion with radius
a = 1.5 Å, when a monovalent ion is changed to a divalent ion, or a is decreased from 1.5 Å to 1.0 Å.
In summary, we have developed a coarse-grained molecular theory, the dipolar self-consistent field theory (DSCFT)
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FIG. 2: (a) Composition profile of MeCN and MeOH as a function of the radial distance r from a Ag+ ion. (b) The transfer
free energy ∆G∗ as a function of the volume fraction of MeCN. Square points: experimental data [37], solid line (purple): ∆G∗

calculated by the DSCFT, and dashed line (green): result implied by the Born expression and linear mixing rule for the bulk
dielectric constant.

FIG. 3: (a) Composition profile of chloroform and ethyl acetate as a function of the radial distance r from a Na+ ion (b) Profile
for the local dielectric function. The bulk composition for the mixture is φChl = 0.026 and φEthA = 0.974.

for studying solvation of salt ions in simple molecular liquids and liquid mixtures. The theory includes key molecular
characteristics such as permanent and induced dipoles of solvents, and their molecular volume, without any adjustable
parameters. Effects such as dielectric saturation, excluded volume and local solvent reorganization are naturally
accounted for in a unified theoretical framework. The theoretical predictions for both single-component liquids
and binary mixtures are in remarkable agreement with experimental data. Our study shows that the molecular
polarizability plays a key role in ion solvation. The primary contribution to the solvation energy arises from the
region near the ion where there is significant dielectric saturation of the permanent dipoles, and thus the bulk
dielectric constant is a poor description for the ion solvation in polar liquids. Since the mean-field treatment in the
DSCFT underestimates the reaction field, which is known to be important in determining the bulk dielectric constant
[15, 16], the good agreement between experimental data and our DSCFT results also suggests that this field plays a
minor role in ion solvation .
The composition dependence of the ion solvation energy in liquid mixtures obtained in this work provides the first

quantitative theory for such systems and serves as essential input for studying salt-induced phase separations in binary
mixtures. In addition, the theory can be extended to study ion solvation at liquid-liquid interfaces. Finally, we expect
that many of the effects addressed in this work to be relevant to non-equilibrium charge solvation, as in the context
of the Marcus theory for electron transfer [38, 39].
This research has been supported by the National Science Foundation, Grant Nos. CBET-0965812 and CHE-
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