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Although geometrical frustration transcends scale, it has primarily been evoked in the micro
and mesoscopic realm to characterize such phases as spin-ice, liquids and glasses and to explain
the behavior of such materials as multiferroics, high temperature superconductors, colloids and
copolymers. Here we introduce a system of macroscopic ferromagnetic rotors arranged in a planar
lattice capable of out-of-plane movement that exhibit the characteristic honeycomb spin ice rules
studied and seen so far only in its mesoscopic manifestation. We find that a polarized initial state
of this system settles into the honeycomb spin ice phase with relaxation on multiple time scales. We
explain this relaxation process using a minimal classical mechanical model which includes Coulombic
interactions between magnetic charges located at the ends of the magnets and viscous dissipation at
the hinges. Our study shows how macroscopic frustration arises in a purely classical setting that is
amenable to experiment, easy manipulation, theory and computation, and shows phenomena that
are not visible in their microscopic counterparts.

PACS numbers: 63.20.dd,75.10.Hk,45.20.dc

Frustration in physical systems commonly arises be-
cause geometrical or topological constraints prevent
global energy minima from being realized. Although not
limited to microscopic phenomena, it is commonly seen
in compounds with spins forming lattices with a trian-
gular motif [1]. In such systems, frustration may lead to
the existence of ice selection rules [2] which have been
observed in a variety of materials where spins form net-
works such as the corner-sharing tetrahedra, known as
the Pyrochlore lattice [3–5], leading to monopole-like ex-
citations [6] and other exotic phases of matter [7]. Even
though, artificial spin ices [8–10] have shown that frustra-
tion can be mimicked by classical magnets, these systems
do not account quantitatively for the effects of inertia,
dissipation [11–13], dilution and geometrical disorder be-
cause of the mesoscopic scale and fast dynamics of the
domain walls (∼ 10 ns) that hinder the understanding of
collective dynamics processes. Here we aim to circum-
vent this situation by introducing a new macroscopic re-
alization of a frustrated magnetic system created using
single out-of-plane rotational degree of freedom magnetic
rotors, arranged in a kagome lattice, a pattern of corner-
sharing triangular plaquettes that dynamically evolves
into a spin-ice phase after a magnetic quench. The ice
phase is reached due to the delicate interplay between in-
ertia, friction and Coulomb-like interactions between the
macroscopic magnetic rods. Our prototypical frustrated
system has a few advantages for research in frustrated
magnetic systems associated with the ability to (i) tune
the interactions through changes in distance and/or ori-
entation between magnets and (ii) examine the lattice
relaxation dynamics by direct visualization at a single
particle level.

A minimal macroscopic realization of local frustration
can be seen easily in a 120◦ star configuration using three
ferromagnetic rods with their hinges on a plane (Fig.

1(a)). The rods have length L = 2a = 1.9 × 10−2 m,
diameter d = 1.5 × 10−3 m, mass M = 0.28 × 10−3 Kg
and saturation magnetization Ms = 1.2 × 106 A m−1.
By design the only allowed motions for the rotors are ro-
tations in the polar direction α. The hinges supporting
the rods were placed at the sites of a kagome lattice with
lattice constant l =

√
3(a+∆) where ∆ is the shortest dis-

tance between the tips and the nearest vertex center and
∆/L ∼ 0.2 (Fig. 1(a)), so that when in the x − y plane,
the magnets realize the bonds of a honeycomb lattice.
The magnetization of a rotor i is defined as the vectormi

joining its N to its S pole, thus mi is the coarse-grained
spin variable for each magnet. When all three magnets
are close to each other, the lowest energy configuration
consists of one pole being different from the others, lead-
ing to a frustrated state consisting of permutations of
NNS or SSN (S=south pole, N = north pole) that cor-
respond to the honeycomb spin ice rules [9, 14]. With
this unit-cell plaquette, we prepare a polarized lattice of
n = 352 of these magnetic rotors, with an unavoidable
geometrical disorder in the azimuthal orientation of the
rotors, θ, due to lattice imperfections δθmax ∼ 2o; this
follows a Gaussian distribution with mean δ̄θ = 1.2◦.
We oriented the S poles of all rotors out of the plane
by applying a strong magnetic field along the ẑ direction
Bz = 3.2× 10−3 T (Supplementary Information S4). At
t = 0 the field was switched off, to allow for the lattice
to relax, a procedure that was repeated several times.
After about 2 seconds, all the rotors had reached equilib-
rium configurations very near the x − y plane (the non-
planarity out of the x−y plane δα ∼ 10◦ on average) and
in the honeycomb spin ice manifold. Fig. 1(b), shows a
picture of the lattice where all the rods fulfill the ice rules.
The experimental distribution of vertices is shown in the
(red) bars of Fig. 1(d). We find all vertices falling into
the six low energy (spin ice) configurations while high
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FIG. 1: (a) A triad of magnetic rotors (lying in one of the sublattices indicated as 1, 2 and 3) having length L = 2a = 1.9×10−2

m, diameter d = 1.5 × 10−3 m, mass M = 0.28 × 10−3 Kg and saturation magnetization Ms = 1.2 × 106 A m−1 are located
at θ = 120◦ respect to each other. The out of plane degree of freedom is denoted by the polar angle α. Painted in black the
magnet south pole (S) is distinguished from its north pole (N). (b) Picture of the lattice with its centers located at distance
l =

√
3(a+∆) with the n rods lying in the x−y plane fulfilling the honeycomb spin ice rules. Inset shows the Fourier transform

of the lattice. (c) The numerical equivalent lattice having the same experimental parameters. In this case the point of the arrow
denotes the S pole of the magnet. (d) Top: Histograms taken from 10 experiments and simulations showing the experimental
(red) and numerical (black) distribution of vertices. Bottom: Local energy of the eight vertex configurations possible in the
honeycomb lattice, in units of D = 10−5 J (Supplementary S6).

energy states (type 1 and 2) are absent.

This macroscopic spin ice consists of elemental rotor
units that constitute a frustrated triad which we char-
acterize at a static and a dynamic level (Supplementary
Information S1, S2 and S3). This allows us to use a dipo-
lar dumbbell approach to the magnets [6], determine the
charge q = πMsd

2/4 ∼ 2.03 A m, at each pole, find the
damping time scale for an isolated rod τD ∼ 1 s and
examine how Coulomb interactions and geometrical dis-
order in θ and ∆ control the orientations of the rods rel-
ative to each other. On a collective level, the relaxation

of the lattice from the ẑ polarized state to the spin ice
manifold may be characterized in terms of the correlation
between nearest neighbor spins α and β, with SαSβ = 1
when mα · mβ is positive, SαSβ = −1 otherwise. From
high speed movies (400 fps), we extracted the full time
trajectory αi(t) of the i−th rotor (Supplementary S4 and
Movie MS1) and computed the spin-spin correlations.

We find that there are three stages in the spin re-
laxation process. In stage I, corresponding to the first
∼ 0.07 s, the rotors break their initial axial symmetry,
Fig. 2(a), and correlations decay rapidly with a charac-
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FIG. 2: Lattice dynamics characterized by nearest neighbor spin correlations, 〈SαSβ〉. (a) Stage I: once Bz is turned off, the
rotors originally pointing along ẑ break their axial symmetry. (b) with the image showing the end of stage I and the onset of
stage II when rods rotate respect to their center of mass yielding a plateau in 〈SαSβ〉. (c) with a snapshot of the rods oscillating
in stage III. (d) In red experimental data obtained via image processing, in blue molecular dynamics simulation results from
the numerical solution of equation (S4) where the full coulomb contributions from all neighbors is taken into account. At t=0
all S poles point along ẑ. Stage I is dominated by Coulomb interactions between rods and characterized by the Coulomb time
scale tc. In Stage II, all rotors spin until dissipation damps out the spin in favor of oscillations, leading to Stage III where they
exhibit damped oscillations. After relaxation the rods lie in the x-y plane in a honeycomb spin ice magnetic configuration, with
its characteristic nearest neighbor spin correlations 〈SαSβ〉 = 1/3 (solid line). Inset: Experimentally measured value of 〈SαSβ〉
during the initial explosive evolution (red) compared with cos(α) where α is the solution of Supplementary equation (S2) for
one rotor interacting with two neighbors, in the absence of damping and external torques (green).

teristic Coulomb time scale tc ∼ 0.02 s, Fig. 2(d), which
is the shortest time scale in the lattice relaxation, with

tc ∼
√

aI/µ0

q dominated by internal Coulomb interactions
for the relaxation of a rotor interacting with two neigh-
bors (Supplementary S4) in the absence of damping and
external torques (inset of Fig. 2(d)). Next, magnets of
sub-lattices 1 and 2 (Fig. 1(a)) organize in head to tail
chains along the ŷ direction, while those belonging to
sub-lattice 3 still remain non-planar, Fig. 2(b). In Stage
II, once the sub-lattice 3 becomes planar, all the rods spin

continuously leading to a plateau in the spin correlations
(Fig. 2(d)); eventually the kinetic energy of the rotors
has been dissipated sufficiently that the rotors oscillate
rather than spin. For our experimental parameters (Fig.
1(a)), the phase space trajectory changes from librations
to damped oscillations after 0.45 s (Supplementary Fig.
S7); the rotors typically average about four full rotations
before they switch to oscillations. Finally, in Stage III
(Fig. 2(c) and Fig. 2(d)) the rods oscillate without full
rotations: when we fit the experimental dynamics at this
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state to a decaying exponential we find td ∼ τD, thus this
stage is dominated by dissipative effects.

To understand these different dynamical regimes, we
performed molecular dynamics simulations of the massive
underdamped rotors interacting through the full long-
range internal Coulomb interactions between all the rods
in the lattice using a Verlet algorithm (Supplementary
S5, Fig. S10 and Movie SM2). In Fig. 2(d), we see
that the computed nearest neighbor spin correlations for
the relaxation of the numerical lattice has the same three
qualitative different regimes as in the experiments when
the lattice relaxes from a polarized state to its spin ice
manifold. Furthermore, the Coulomb and damping time
scales for stage I and III as well as the plateau featuring
stage II are in good agreement with experiments. The ob-
served high frequency fluctuations in 〈SαSβ〉(t) in both,
experiments and simulations, are due to the Coulomb
coupling between rods which rapidly reorient while they
relax due to the fluctuations in the internal magnetic
field.

Having examined the dynamics of relaxation to the
spin ice state, we now turn to the lattice response when
a dipole with charge |Qe| at each pole and length Le,
at a vertical distance h underneath the relaxed lattice is
moved along one of the three sub-lattices at speed v (Sup-
plementary Fig. S9). For an isolated rotor, the critical
torque that is required to destabilize the planar configu-
ration is given by Tc ∼ 2aBcq, where Bc is the applied
magnetic field; experiments on many rotors yielded an
average Bc ∼ (2.4 ± 0.1) × 10−4 T. Equivalently, the
threshold distance at which the external field will over-
come both internal Coulomb interactions and static fric-
tion is given by h∗ ∼

√

Qeqaµ0/Tc . Dynamically, the
internal Coulomb interactions set a time scale for small
out-of-plane oscillations of the rotors in the lattice, given
by τph ∼

√

∆2I/µ0q2a ∼ 0.01s for the experimental pa-
rameters at hand. Thus, there are two dimensionless
quantities that determine the response to the external
perturbation: the ratio between phononic and kinetic
time scales vτph/a and the ratio between internal and
external magnetic forces, F int/F ext = qh2/(Qe∆2).

In Fig. 3, we characterize the phase diagram of the dy-
namical response of the spin-ice lattice in terms of these
dimensionless parameters. For h < h∗, the lattice is dis-
turbed only in a band of width D(h) ∼

√

(h∗2h)2/3 − h2

centered along the trajectory of the moving external
dipole, based only on local interactions, static friction,
and interactions with the external dipole (Supplementary
Fig.S9). For large v, τph/τk ≫ 1 so that the rotors have
little time to respond and barely oscillate in an inertia-
dominated regime. In the opposite limit, large amplitude
oscillations and flips are apparent as there is enough time
for the rotors to interact with the external dipole. Our
results for these regimes show that the simulations (filled
circles) and experiments (filled squares) agree. The solid
line defines a threshold of the RMS fluctuations for the

FIG. 3: Phase diagram of the lattice dynamical response to
an external perturbation. The horizontal axis shows the di-
mensionless ratio of the kinetic and phononic time scales with
v the speed of an external dipole, while the vertical axis shows
the dimensionless ratio of the internal and the external mag-
netic forces due to an external dipole of strength Q located at
distance h from the lattice (see text for details). Experimental
and numerical data shown in squares and circles respectively,
and colors define the nature of the lattice dynamical response
to the external perturbation. We see that the dynamics may
be broken up into a frictionally dominated, interaction dom-
inated or inertially dominated regime as a function of the
relative magnitude and rate of external forcing.

oscillations of all the rods δthLi = 0.5 (Supplementary S4)
separating the regimes. To understand this, we resort to
a simple single rod approximation where the impulsive re-
sponse of a rotor due to a long dipole located at a distance
d(t) =

√

h2 + (vt)2, balances the change in its angular
momentum yielding h ∼ h∗(Qeqaµ0/I)

3/2/v3, consistent
with the observations when vτph/a ≫ 1. Varying inertia
from I0 to 4I0 using our simulations we confirmed that as
I grows, the boundary between interaction and inertial
regime shift to the left; the inertial regime is reached for
smaller values of vτph/a and qh2/(Qe∆2). When h ≫ h∗,
the Coulomb force due to the external field is not able
to overcome the combined effects of static friction and
internal Coulomb interactions, and the lattice falls into a
friction dominated one in which oscillations are not ap-
parent.

Our spin ice phase emerges in a system of damped
macroscopic rotors, purely driven by interactions in a
classical mechanical setting that differs from those found
in its micro and mesoscopic relatives. Using a minimal
model we can capture the dynamical evolution of the col-
lection of rotors in the lattice observed in our experiments
and reproduce the three main stages of lattice relaxation
from a polarized state: explosive behavior lasting tc, dis-
sipative librations and damped oscillations. The advan-
tages of studying this macroscopic realization beyond the



5

present work include the fact that (i) the interactions can
be tuned through changes in the diameter of magnets
or distance or orientation between them (Supplementary
Fig. S4), (ii) inertial and dissipative effects can be stud-
ied by controlling the friction coefficient at the hinges
as well as the mass of the rods, (iii) the effect of vacan-
cies or random dilution can be examined by removing ro-
tors from the lattice (iv) the lattice relaxation dynamics
can be directly visualized at single particle level and (v)
the system can be easily generalized to three dimensions
(3-D) by stacking plates with hinged rotors along the
z direction. Indeed a minimal 3-D realization is shown
in Supplementary Fig. S12: a tetrahedral configuration
like the one found in the Pyrochlore lattice was created
placing three acrylic plates one on the top of the other,
the bottom and top plates contain three rotors defin-
ing an equilateral triangle and the middle plate contains
one rotor located equidistant from the others. The ease
of fabrication, manipulation and measurement and the
study of a variety of soft modes in artificial lattices in
a system that is nearly five orders of magnitude larger
and slower than its mesoscopic counterpart suggests that
there is a new class of phenomena waiting to be explored
in macroscopic frustrated systems.
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