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We predict that an incompressible fractional quantum Hall state is likely to form at ν = 3/8 as
a result of a chiral p-wave pairing of fully spin polarized composite fermions carrying four quan-
tized vortices, and that the pairing is of the anti-Pfaffian kind. Experimental ramifications include
quasiparticles with non-Abelian braid statistics and up-stream neutral edge modes.
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Many novel structures and ideas arising in the study of
quantum Hall effect, a topological state of matter, have
generated new developments in other contexts, for exam-
ple, topological insulators, Chern insulators, Majorana
fermions and quantum computation. The topological na-
ture of the fractional quantum Hall effect (FQHE) man-
ifests through formation of composite fermions (CFs),
through Abelian and non-Abelian braid statistics, and
also through the structure of the gapless edge modes.
A focus of recent attention has been the 5/2 state, be-
lieved to be a chiral p-wave paired state of composite
fermions supporting Majorana zero modes obeying non-
Abelian braid statistics [1–5]. In this Letter we propose
that the mechanism of CF pairing is likely to produce
an incompressible FQHE state also at filling factor 3/8
in the lowest Landau level (LL), and enumerate many
experimentally testable consequences arising from this
physics, including non-Abelian braid statistics and the
presence of up-stream neutral edge modes. The possibil-
ity of CF pairing at 3/8 was considered theoretically in
several previous articles [6–8], which are discussed at the
end in the context of the present work. While FQHE at
3/8 has not been established conclusively, experimental
indications for it have been seen by Pan et al. [9] and
Bellani et al. [10].

Our calculations below demonstrate that for fully po-
larized electrons, the 3/8 state is accurately described as
the ν∗ = 3/2 state of composite fermions carrying two
vortices (2CFs), and thus represents a 2CF analog of the
half filled second LL. We provide evidence that that the
composite fermions in the half filled second CF-LL (called
ΛL) capture two additional vortices to turn into higher
order composite fermions (4CFs) and condense into a
paired FQHE state. For the 5/2 FQHE there are two
topologically distinct candidates for the paired CF state:
the Pfaffian (Pf) [1] and its hole partner known as the
Anti-Pfaffian (APf) [11–13]; a 3-body interaction term
induced by LL mixing breaks particle hole symmetry and
selects one of these states [14, 15]. Two candidate states
are obtained also at 3/8 by composite-fermionizing the Pf
and APf at 3/2. Our calculations show that the Coulomb
interaction favors the APf state at 3/8. Interestingly, LL

mixing is not necessary for discriminating between the
Pf and the APf at 3/8 – the Coulomb interaction be-
tween electrons induces a complex effective interaction
between composite fermions that automatically contains
two-, three- and higher body terms.
The gap at 3/8, and the difference between the Pf and

the APf, are governed by extremely small energy scales,
and a theoretical resolution of these states requires a pre-
cise and reliable quantitative treatment of the inter-CF
interaction. We will consider N electrons moving on the
surface of a sphere, subjected to a net magnetic flux of
2Q flux quanta [16]. We will assume that the spin de-
gree is frozen, and the magnetic field is high enough that
LL mixing is suppressed. The filling factor is defined as
ν = limN→∞

N
2Q . Composite fermions [17] experience an

effective flux 2Q∗ = 2Q− 2(N − 1). At half filled second
ΛL, the composite fermions satisfy 2Q∗ + 2 = 2N2 + λ,
where N2 is the number of composite fermions in the
second ΛL and λ is an integer “shift.” This leads to the
following relations at ν = 3/8:

2Q =
8N + λ− 10

3
, 2Q∗ =

2N + λ− 4

3
, N2 =

N − λ+ 1

3

We refer to 2Q given by the above relation as the “Pf
flux” for λ = −3 and the “APf flux” for λ = 1. (At
this stage, these terms should be taken only as conve-
nient labels, and not to mean that the actual states at
these fluxes are represented by the Pf and the APf wave
functions.)
Exact diagonalization is possible for 14 (12) electrons

at Pf (APf) flux, but not for larger systems [18]. Fur-
ther progress, however, can be made within the CF
theory. We determine the energies and wave functions
for low lying states by the method of CF diagonal-
ization (CFD) [19], which proceeds along the follow-
ing steps. We first perform exact diagonalization of
the Coulomb Hamiltonian at Q∗ (ν∗ = 3/2) keeping

the lowest LL fully occupied, to obtain a basis {ΦL,α
3/2},

where α labels the different basis functions in the to-
tal angular momentum L sector. (Which interaction
is chosen is unimportant because our goal is to pro-
duce all basis states with the lowest kinetic energy.)
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FIG. 1. Exact Coulomb spectra (dashes) at [N, 2Q] = [12,29]
and [14,33], which correspond to APf and Pf fluxes at 3/8.
Spectra obtained from composite fermions diagonalization are
also shown (circles). The energies here and in Fig. 2 are the
total Coulomb energies, which do not include the neutraliz-
ing background. The dimensions of the Hilbert space in the
individual L sectors are shown at the top and the bottom.

We then composite-fermionize this basis through the
relation ΨL,α

3/8 = PLLL

∏
j<k(ujvk − vjuk)

2ΦL,α
3/2 , where

u = cos (θ/2) e−iφ/2, v = sin (θ/2) eiφ/2, and PLLL de-
notes projection of the wave function into the lowest LL,
handled by the method in Ref. [20]. The correlated states

{ΨL,α
3/8} give us a basis for the low energy CF states at

ν = 3/8. All these states would be degenerate if compos-
ite fermions were non-interacting, but the degeneracy be-
tween them is split because of the residual interaction be-
tween composite fermions. We determine the low energy
spectrum by diagonalizing the full Coulomb Hamiltonian
in the CF basis (which can be performed in each L sector
separately). The basis functions are very complex and
non-orthogonal, but efficient methods have been devel-
oped for a Gram-Schmid orthogonalization and an eval-
uation of the Hamiltonian matrix by Metropolis Monte
Carlo [19]. A diagonalization of this matrix produces the
low energy spectra as well as eigenfunctions. These con-
tain no adjustable parameters, and the Monte Carlo sta-
tistical uncertainty can be reduced to the desired level by
increasing the number of iterations accordingly (which,
for our calculations, requires up to 108 Monte Carlo steps
for each system). We study systems with as many as 26
particles, which allows us to draw what we believe to be
reliable conclusions.
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FIG. 2. Energy spectra obtained from CF diagonalization
at both “Pf flux” (left panels) and “APf flux” (right pan-
els) at ν = 3/8, with N and 2Q values shown on the fig-
ure. To avoid clutter, the typical estimated statistical uncer-
tainty from Metropolis Monte Carlo evaluation of integrals is
shown only on one point. Only states below certain energy
are shown.

In Fig. 1 we compare the CFD spectra with those ob-
tained from an exact diagonalization of the Coulomb in-
teraction in the full lowest LL space for N = 14 at the
Pf flux and N = 12 at APf flux. These comparisons
show that: (i) the physics of the 3/8 state is indeed de-
scribed in terms of composite fermions; and (ii) the CFD
gives an essentially exact account of the inter-CF interac-
tion. Important for our purposes is to note that the CF
spectra not only reproduce the exact Coulomb spectra
accurately, but also capture the very slight differences be-
tween the Coulomb spectra at the Pf and the APf fluxes.
(The presence of such differences indicates that the par-
ticle hole symmetry is not exact for composite fermions.)

CF spectra for larger systems are shown in Fig. 2. A
necessary condition for incompressibility is a spatially
uniform L = 0 ground state. The fact that all of the
APf flux values produce L = 0 ground states (but not all
of the Pf flux values do) suggests that an incompressible
state occurs at 3/8 at the APf flux. The system sizes
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are still not large enough to be able to estimate the gap
reliably, but we note that the gap to the lowest neutral
excitation for the two largest systems is ∼0.002 e2/ǫl,
which we take as a measure of the energy scale associ-
ated with this state. For a given density, this is roughly
a factor of 5 smaller than the theoretical gap of the 5/2
state (∼ 0.028 e2/ǫl [22]), taking into account the differ-
ent magnetic lengths at the two fractions.
For a further confirmation that the actual state is in-

deed described by the APf wave function, we construct
the following trial wave functions, labeled 1 and 2, at the
Pf and the APf flux values:

Ψtrial−1
3/8 = PLLL

∏

j<k

(ujvk − vjuk)
2Φ

Pf/APf
3/2

Ψtrial−2
3/8 = PLLL

∏

j<k

(ujvk − vjuk)
2ΦCoulomb

3/2

Here, Φ
Pf/APf
3/2 is the Pf or APf wave function at 3/2,

which refers to the state in which the lowest LL is fully
occupied and the electrons in the second LL form a Pf
or an APf state. (We produce the Pf state in the lowest
LL by diagonalizing the 3-body interaction Hamiltonian

[2] V3 =
∑

i<j<k P
(3)
ijk (3Q − 3), where P

(3)
ijk (L) projects

the state of the three particles (i, j, k) into the subspace
of total orbital angular momentum L; the APf state is
obtained by its particle hole conjugation; we then elevate
the Pf/APf to the second LL and fill the lowest LL fully

to obtain Φ
Pf/APf
3/2 .) The wave function ΦCoulomb

3/2 is the

exact Coulomb eigenstate at the relevant Q∗ at ν∗ =
3/2. Composite-fermionization of these wave functions
gives two trial wave functions at 3/8. Tables I and II
compare the energies of these trial wave functions with
the CFD energies, and also give the overlaps of these
trial wave functions with the CFD wave function. The
APf state has higher overlaps, again indicating that it
is favored over the Pf. The overlaps are not extremely
high, but on the same order as the overlaps of the 5/2
Coulomb ground state with the Pf / APf wave function.
Taking into account these facts, we conclude that it is
likely that the 3/8 state is incompressible and described
by a composite-fermionized APf state.
The principal consequences arising from our calcula-

tions above are that (i) FQHE is possible at 3/8 (Pan et

al. had observed [9] a resistance minimum at 3/8, but a
well quantized plateau has not been seen so far); (ii) it
originates due to p-wave pairing of composite fermions
in the second Λ level; and (iii) the pairing is of the APf
type. We obviously cannot rule out that the system
sizes considered here may not capture the true nature
of the thermodynamic phase, and the eventual confir-
mation will likely come from experiments. We now list
some experimental consequences of the above physics.
(i) The 3/8 FQHE state should be fully spin polarized

TABLE I. Comparing the CFD ground state ΨCFD
3/8 at at the

“Pf flux” 2Q = (8N − 13)/3, obtained by CF diagonaliza-
tion, with the trial wave functions, Ψtrial−1

3/8 and Ψtrial−2

3/8 , de-

rived from the composite fermionization of the Pf and the
exact Coulomb states at 3/2. (See text for definition.) ECFD

3/8 ,

Etrial−1

3/8
, and Etrial−2

3/8
are the energies per particle for these

three states, quoted in units of e2/ǫl, where l =
√

~c/eB
is the magnetic length and ǫ is the dielectric constant of
the background material; this energy includes the interac-
tion with the positively charged background. The numbers
Oj = 〈Ψtrial−j

3/8
|ΨCFD

3/8 〉 are the overlaps of the two trial wave

functions with the CFD ground state (all properly normal-
ized). For N = 20 the comparisons are given for the lowest
energy state in the L = 0 sector; the CFD ground state occurs
at L = 6.

N O1 O2 Etrial−1

3/8 Etrial−2

3/8 ECFD
3/8

14 0.726(1) 0.973(2) -0.44153(8) -0.44372(9) -0.44403(9)

20* 0.379(1) 0.434(1) -0.43418(2) -0.43515(8) -0.43599(1)

26 0.271(1) 0.526(1) -0.43021(9) -0.43146(6) -0.43248(4)

TABLE II. Comparing the CFD state at “APf flux” 2Q =
(8N−9)/3 with two trial wave functions, Ψtrial−1

3/8 and Ψtrial−2
3/8 ,

obtained by composite fermionization of the APf and the ex-
act Coulomb states at 3/2. Other symbols have the same
meaning as in Table I.

N O1 O2 Etrial−1

3/8 Etrial−2

3/8 ECFD
3/8

12 0.816(1) 0.994(1) -0.43903(2) -0.44076(6) -0.44079(9)

18 0.587(2) 0.622(2) -0.43168(9) -0.43225(7) -0.43310(8)

24 0.503(1) 0.781(1) -0.42845(9) -0.42948(8) -0.42995(7)

(as is also the case for the 5/2 state [23]). (ii) The chi-
ral p-wave pairing reflects through the charge and non-
Abelian braid statistics of the quasiparticles (“composite
non-Abelions”). The excess charge associated with an ex-
citation is e/16, and its braid statistics will have similar
signatures as those predicted for 5/2 [24, 25]. (iii) Pro-
posals have been made for experimentally distinguishing
the Pf and the APf states at 5/2 through their differ-
ent edge structures [11, 12, 26, 27], and these analyses
carry over to the 3/8 state with appropriate modifica-
tions. The Pf and APf states at 3/2 have edge struc-
tures (disregarding the possibility of edge reconstruc-
tion) 3/2(Pf)-1-0 and 3/2(APf)-2-1-0, respectively, which
translate, upon composite-fermionization, into 3/8(Pf)-
1/3-0 and 3/8(APf)-2/5-1/3-0 at 3/8. An immediate
consequence is that the APf will necessarily contain
counter-propagating edge modes, including an up-stream
charge neutral Majorana mode, which can have experi-
mental signatures, e.g., in noise measurements in an up-
stream voltage contact [28]. Observation of such modes
would not constitute a proof of APf, because the Pf state
can also have backward moving modes due to edge recon-
struction. However, we expect that the physics of edge re-
construction at 3/8 should not be too different from that
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at the nearby fractions 1/3 or 2/5, so an observation of
counter-propagating modes at 3/8 concurrent with an ab-
sence of such modes at 1/3 and 2/5 can be taken as a sub-
stantial evidence for APf state at 3/8. The thermal Hall
conductivityKH = ∂JQ/∂T , where JQ is the thermal en-
ergy current and ∂T is the “Hall” temperature difference,
can also in principle distinguish between the Pf and the
APf [11]. In units of (π2k2B/3h)T , each chiral boson edge
mode contributes one unit and the Majorana fermion
mode 1/2 unit [29, 30], with the sign depending on the
direction of propagation. The boundary 3/8(Pf)-1/3 sup-
ports a chiral boson and a Majorana mode; the boundary
3/8(APf)-2/5 also supports a chiral boson and a Majo-
rana mode, but moving in the upstream direction. This
produces thermal Hall conductivity of 1 + 1/2+ 1 = 5/2
for the Pf and −1− 1/2+1+1= 1/2 for the APf at 3/8.
This result is believed to be robust against interactions,
disorder or edge reconstruction. One may also consider
various tunneling exponents, following Wen [26, 27]. The
exponent describing the long distance decay of the prop-
agator of the charge 1/16 nonabelian quasiparticles can
be shown [31] to be g = 7/13 for the 3/8 Pf; this expo-
nent appears in the prediction [27], assuming absence of
edge reconstruction, that the current from one edge of
the sample to the opposite edge near a quantum point
contact satisfies I ∼ V 2g−1 and the tunnel conductance
has a temperature dependence σ ∼ T 2g−2. For the APf
state, on the other hand, the presence of up-stream neu-
tral modes renders the various exponents non-universal
even for an unreconstructed edge.

The earlier studies of the ν = 3/8 considered compos-
ite fermions interacting with a 2-body interaction, the
form of which is determined [6, 14, 21] by considering
two composite fermions in the second ΛL. This method
is less accurate than the CFD used above, and, in partic-
ular, cannot discriminate between the Pf and the APf
states because, by construction, it obeys particle-hole
symmetry for composite fermions. Ref. [6] evaluated the
energies of variational wave functions for the Pf, stripe,
Wigner crystal and Fermi sea states at 3/8, and con-
cluded that the stripe phase has the lowest energy; the
conclusion, however, rests sensitively on the quality of
various trial wave functions used in the study. Ref. [8]
investigated the 3/8 sate by a numerical diagonalization
of the same 2-body model interaction, but did not not
find incompressible states at all even N . Ref. [7] con-
sidered composite fermions in the spin reversed n = 0
ΛL, also using a 2-body interaction model for composite
fermions, and pointed toward a partially spin polarized
paired FQHE state; such a state is unlikely to be relevant
at very high magnetic fields, e.g. in Ref. [9]. We finally
note that we have not included in our work the effect of
finite thickness, LL mixing and disorder; while these will
surely make quantitative corrections, we do not see any
reason why they should change the qualitative physics of
the state.
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