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We report on the emergence of an Electronic Griffiths Phase (EGP) in the doped semicon-
ductor FeSb2, predicted for disordered insulators with random localized moments in the vicinity
of a metal-insulator transition (MIT). Magnetic, transport, and thermodynamic measurements of
Fe(Sb1−xTex)2 single crystals show signatures of disorder-induced non-Fermi liquid behavior and a
Wilson ratio expected for strong electronic correlations. The EGP states are found on the metal-
lic boundary, between the insulating state (x = 0) and a long-range albeit weak magnetic order
(x ≥ 0.075).
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The coupling of disorder to strong correlations remains
one of the most interesting frontiers in physics [1]. One of
the key issues is the mechanism of disorder-induced quan-
tum Griffiths phases in metals. Magnetic quantum Grif-
fiths phases (MGP) found in insulators host rare mag-
netic clusters with large susceptibilities [2]. They arise
in the proximity to magnetic phase transitions and have
been advocated recently to be the correct framework for
understanding of the non-Fermi-liquid behavior even in
metallic heavy-fermion compounds [3, 4]. Yet, it was
pointed out that in such systems quantum tunneling will
be suppressed, leading to superparamagnetic classical in-
stead of quantum Griffiths behavior [5, 6]. The quantum
Griffiths singularities can only be observed in the tem-
perature region T ∗ < T < TF , where TF is the Fermi
temperature, whereas below T ∗ the clusters are frozen
and electronic heat capacity γ ∼ lnT and magnetic sus-
ceptibility χ ∼ 1/T [4, 7]. However, the crossover tem-
perature to the paramagnetic phase T ∗ and the temper-
ature window where Griffiths phases can be observed in
heavy-fermion metals remain controversial [8–10]. On the
other hand, EGP in metals are found close to a disorder-
driven Mott-Anderson transition where the number of
unscreened local spins rises with the increase in disorder
strength [11–13]. Nevertheless, the Kondo or magnetic
materials where EGP has been unambiguously observed
remain elusive due to the stability of competing ground
states such as MGP or Kondo-cluster-glass [14–17].

FeSb2 is an example of a nearly magnetic (Kondo
insulator-like) semiconductor, similar to FeSi [18–20]. It
exhibits a large Seebeck coefficient S and the highest
known thermoelectric power factor S2σ [21]. The elec-
tronic system in Fe(Sb1−xTex)2 shows a high sensitiv-
ity to substitutions. An MIT is induced at the critical
concentration xc = 0.001 and a region of canted anti-
ferromagnetism is observed for 0.1 ≤ x ≤ 0.4 with an
intermediate ferromagnetic phase for x = 0.2 [22]. We
now focus on the paramagnetic metallic region in the

vicinity of the MIT for xc < x < 0.1 where we note that
a canted antiferromagnetic state is induced already at
x = 0.075. Below that concentration, both thermody-
namics and electrical transport are consistent with the
EGP predicted in disordered heavy-fermion metals.

Single crystals of Fe(Sb1−xTex)2 were prepared as de-
scribed previously [22]. They were oriented using a Laue
camera and polished along three principal crystal axes for
four-probe resistivity measurements. Magnetic, thermal
and transport measurements were carried out in a Quan-
tum Design MPMS-5, 3He inserts of PPMS-9, PPMS-14,
and in an Oxford 3He insert equipped with an 18 Tesla
magnet at NHMFL, Tallahassee.

The low-temperature heat capacity of Fe(Sb1−xTex)2
above 0.7 K is best described with a C(T )/T = βT 2 +
δT 4 + cT−1+λC (Fig. 1(a)). The first two terms are
due to harmonic and anharmonic phonon contributions
[23]. The last term is a disorder driven non-Fermi-liqiud
(NFL) electronic term with λC < 1, predicted for Grif-
fiths phases in disordered paramagnetic metals [24]. Fits
to our data (red lines) are excellent down to 0.7 K and
the fitted parameters are given in Table I. The phonon
contribution remains nearly the same, as would be ex-
pected for such low doping level. The difference in heat
capacity below 10 K stems mainly from the electronic
part. Below 0.7 K, C(T )/T shows additional upturn.
This cannot be described by a paramagnon model for
spin fluctuations, C(T )/T = γSF + δSFT

2 lnT/TSF [25].
Moreover, the contribution due to spin fluctuations is
generally sensitive to magnetic field, i.e. such param-
agnon fluctuations would be suppressed by magnetic field
and this is not observed. A power law, C(T )/T ∼ aT−3,
(dashed line, Fig. 1) represents well the low-temperature
heat-capacity increase below 0.7 K, suggesting a nuclear
Schottky anomaly or a low lying magnetic ground state
below 0.4 K similar to YbRh2Si2 or UxY1−xPd3 [26, 27].

Deviation from the Fermi liquid behavior is often found
near a magnetic instability. LDA+U calculations have
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FIG. 1. (a) (Color online) Cp/T versus T for x ≤ 0.05 in
Fe(Sb1−xTex)2. The C(T ) ∼ T−2 dependence is represented
by the dashed lines below 0.7 K. Closed symbols show data
taken in µ0H = 9 T. Red and purple lines are fits to the
formula given in the text. (b) Polycrystalline average of the
magnetic susceptibility of Fe(Sb1−xTex) as a function of tem-
perature for 0 ≤ x ≤ 0.075 in 1 kOe magnetic field. Solid
lines are the best fits to the formula given in the text.

revealed that FeSb2 is in the proximity to a magnetic
ground state with an on-site Coulomb repulsion U = 2.6
eV [20]. As Te substitutes Sb in the lattice, the ther-
mally activated susceptibility of FeSb2 diminishes, ac-
companied by an increasing low-temperature tail (Fig.
1(b)). The χ(T ) data can be well described by

χ(T ) = χNB(T ) +
C1

T −Θ1

+ aT−1+λχ .

The first two terms are the narrow-band-gap [18, 22, 28]
susceptibility χNB(T ) (as described in Ref. 22) and the
impurity-related Curie-Weiss term whose Curie constant
C1 corresponds to the moment µ1 (C1 = µ2

1/8) and Weiss
temperature θ1. As small amounts of Te enter the lat-
tice, the gap ∆ and impurity moment related parame-
ters µ1 and θ1 are approximately constant whereas the
bandwidth W increases considerably (Table I) [22]. The
additional term, χ(T ) ∼ T−1+λχ corresponds to the mag-
netic susceptibility expected for Griffiths phases [24]. At
x = 0.075, we observe signatures for magnetic order be-
low 12 K, similar to what was earlier observed for x = 0.1
[22]. Fitted parameters are listed in Table I.
Above the critical concentration (xc = 0.001), the

anisotropy is greatly reduced and the electrical resistivity
is metallic for current applied along all 3 axes of the or-
thorombic unit cell (Fig. 2(a-c)) for 0.01 ≤ x ≤ 0.05 [22].
This is in line to isotropic χ(T ) in the same temperature
region. For 0.075 ≤ x ≤ 0.2, ρ(T ) is similar to x = 0.1
and x = 0.2 [22] and the semiconducting gaps from fits

to the activated behavior are less than 1 K, suggesting
that the ground state is semimetallic. The metallic ρ(T )
in the paramagnetic region (0.01 ≤ x ≤ 0.05) is charac-
terized by a power-law temperature dependence ρ ∼ T n,
where (1 ≤ n ≤ 2) for current applied along all 3 prin-
cipal axes of the orthorombic structure. The exponent
n diminishes as more Te enters the lattice (Fig. 2(d))
and the electronic system is tuned from Kondo-insulator-
like nonmagnetic towards a weak magnetic ground state.
However, even a modest magnetic field µ0H = 2 T in-
duces a Fermi-liquid-like resistivity ρ ∼ AT 2 in a crystal
with x = 0.01 (Fig. 3(a)). The low-temperature resis-
tivity is quadratic up to 18 T and we plot the coefficient
A as a function of field in Fig. 3(b). As opposed to the
divergence in A near a magnetic-field-induced quantum
critical point, we observe only modest increase [29, 30].
Examination of C/T data in µ0H = 9 T shows a field
independence for x = 0.05 and x = 0.025 [31], whereas
for x = 0.01 there is also a small change in the fitting
parameters β, δ, and c: (β = 0.12(2), δ = 0.0008(2), c =
7.9(1), γ0 = 7.4(2) mJ/moleK2). However, for x = 0.01,
λ = 1.07(2), suggesting that the electronic system has
been tuned away from the NFL behavior (λC , λχ < 1)
[13].

The zero-temperature electronic heat capacity γ0 (Ta-
ble I) was obtained by extrapolation of the curves in Fig.
1 to T = 0 with the upturn below 0.7 K subtracted.
The γ0 values increase monotonically from nearly zero for
x = 0 to γ = 39.2 mJ/mol K2 for x = 0.05. By making a
coarse estimate that the Fermi surface in Fe(Sb1−xTex)2
is spherical and counting one itinerant electron per Te,
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FIG. 2. (Color online) (a)-(c) Anisotropic ρ(T) for x=0.01,
0.025 and 0.05 in Fe(Sb1−xTex)2 (d) Polycrystalline resistivity
of samples as a function of Tn for different Te concentrations.
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TABLE I. Fitting parameters of the magnetic susceptibility and heat capacity. W is the bandwidth and N(EF ) is in unit of
state/eV F.U. FeSb2 has negligible γ0. The impurity terms µ1 and θ1 are observed already in the pure material and remain
similar in the entire investigated doping range.

x ∆(K) W (K) µ1(µB) Θ1 (K) a λχ λC γ0 (mJ/molK2) β δ c N(EF ) m∗(me) RW

0 425(9) 310(8) 0.030(2) 0.8(2) ∼ 0 0.16(1) 0.0008(9) 0.0039(4)

0.01 436(7) 451(6) 0.035(3) 1.6(3) 856(9) 0.86(3) 0.91(7) 8.7(2) 0.12(7) 0.0007(6) 8.1(8) 3.7(2) 21(1) 2.7

0.025 448(4) 525(9) 0.036(1) 3.7(3) 1117(3) 0.84(2) 0.87(5) 13.9(3) 0.15(9) 0.0005(9) 12.8(9) 5.9(3) 25(1) 2.1

0.05 453(5) 525(9) 0.039(2) 1.8(5) 1078(9) 0.89(4) 0.72(3) 39.2(3) 0.27(3) 0.0002(1) 30.2(8) 16.7(4) 56(2) 2.3

we may estimate the electron-mass enhancement due to
electronic correlations. The quasiparticle effective masses
are moderately renormalized and reach a maximum of 56
me for x = 0.05, reminiscent of the heavy-fermion state
induced in FeSi1−xAlx (Table I) [32]. This is in agree-
ment with the Wilson ratio (RW = 4π2k2B/(g3µ

2
B)(χ/γ))

which is a standard measure of electronic correlations in
metals (Table I) [33]. RW is expected to be unity for
a free electron gas and it is about 2 if strong electronic
correlations are present.

In metals conductivity arises due to electron diffu-
sion and the Seebeck coefficient can be described as
S =

π2k2

B

2e
T
TF

= γT
ne , where γ is given by γ = Cel

T =
π2

2

nkB

TF
, with Cel the electronic specific heat and n the

carrier density [34]. The correlation between S
T and γ

in the zero-temperature limit gives a scaling in metals
as q = SNave

Tγ = ±1 where Nav is Avogadro’s constant

[35]. This quasi-universal ratio is valid if the relevant
scattering arises from impurities but not from the mu-
tual scattering of quasiparticles [36]. In order to shed
more light onto the nature of correlations in our crys-
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FIG. 3. (Color online) (a) Low temperature resistivity of
Fe(Sb1−xTex)2 for x = 0.01 plotted vs Tn in magnetic fields
up to µ0H = 18 T. Exponent n from (a) and coefficient A in
ρ = ρ0+AT 2 as a function of magnetic field (d).
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FIG. 4. (Color online) Power-law dependence of S
T

on γ for
Fe(Sb1−xTex)2. The solid line is the fit to the data (excluding
x = 0 point with an exponent of -1.7(4). The direction of heat
current transport was along the crystallographic c-axis.

tals, we performed Seebeck-coefficient measurements at
∼ 2 K. Fig. 4 shows the power-law dependence of S

T on
γ for Fe(Sb1−xTex)2 with x = 0, 0.01, 0.025, and 0.05.
The solid line is the power-law fit to the data for metallic
samples (excluding x = 0). FeSb2 (x = 0) is a Kondo-
insulator-like narrow-gap semiconductor with extremely
low carrier density. Hence, a very large magnitude of
q ∼ 663 corresponding to a small but finite carrier den-
sity of 0.0015 electron per unit cell (∼ 1.25 × 1019 cm−3)
is obtained. Similar effect was discovered in CeNiSn [35].
The doped samples exhibit a power-law dependence of
S/T on γ with an exponent ∼−1.7±0.4 (Fig. 4), con-
tradicting the quasi-universal ratio in a Fermi liquid and
implying very strong electron-electron scattering and in-
tersite magnetic correlations. The power-law dependence
of S/T on γ is expected for metals near a MIT, as seen
in FeSi1−xAlx [37]. This shows that the proximity to
a MIT has substantial effects on thermodynamics and,
as we discuss below, on the mechanism of the Griffiths
phase.

The increase of disorder from a clean insulator will
create states in the gap in the EGP scenario, increas-
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ing the density of states at the Fermi level until the gap
is decreased to zero at the MIT, giving rise to metallic
states with disordered local moments [12]. Even more
disorder tunes the system again to an insulating state
due to localization effects [11, 38]. Whereas the EGP
formalism has been developed for disordered Kondo sys-
tems, we note that the Hubbard U in the strongly cor-
related electronic system of is FeSb2 is reduced from the
values common in lanthanide based heavy fermions and
Fe moments are not as localized [39–41]. Nevertheless,
the EGP predictions are in qualitative agreement with
the Fe(Sb1−xTex)2 phase diagram [22] and with the val-
ues we obtained in Table I. Metallic conductivity with a
characteristic non-Fermi-liquid temperature dependence
for x = 0.01, 0.025, and 0.05 arises due to a bandwidth
increase with Te substitution. The non-Fermi liquid ex-
ponent n in ρ(T ) ∼ T n (Fig. 2) is close to n=3/2, ex-
pected both in metallic glasses [42] as well as for dis-
ordered heavy-fermion metals near an antiferromagnetic
quantum critical point (QCP) [43]. We note that the
resistivity should evolve from ρ ∼ T 1 to ρ ∼ T 3/2 as
the disorder is increased near a magnetic QCP [43], in
contrast to the decreasing n with x in Fe(Sb1−xTex)2
(Fig. 2(d)). In addition, large values of the Wilson ratio
(RW ∼ 20 - 700) are expected in MGP or in cluster-glass
phases due to the existence of large-moment magneti-
cally ordered clusters with a Griffiths exponent λ → 0 as
the system is tuned to the magnetic phase [10, 17, 44].
This is in contrast to our observations where RW ∼ 2
and λ ∼ (0.8 − 0.9) (Table I). This discussion suggests
a considerable influence of the charge channel (MIT) in
the underlying microscopic mechanism of the Griffiths
phase. Spin fluctuations near a glassy state in the EGP
are expected to lead to a marginal Fermi-liquid behavior
[45] and a nearly logarithmic divergence of γ and χ (λ
→ 1), all in much closer agreement with the parameters
obtained here (Table I).

In summary, we have shown that a small amount of Te
doping in Fe(Sb1−xTex)2 single-crystal alloys (up to x ≤

0.05) results in the non-Fermi liquid Griffiths metallic
state that primarily has an electronic origin. This high-
lights the importance of fluctuations in the conduction-
electron local density of states. The EGP theoretical
framework rests on the power-law distribution of the en-
ergy scale for the spin fluctuations, not necessarily of
Kondo origin [1]. However, similarity with disordered
Kondo/Anderson lattices is still significant since NFL di-
vergences appear at rather weak randomness (x = 0.01)
and are magnetic field tuned to a Fermi liquid.
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