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Deformation energetics of carbon nanotube ropes
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We determine the deformation energetics and energy density of twisted carbon nanotubes and
nanotube ropes that effectively constitute a torsional spring. Using ab initio and parameterized
density functional calculations, we identify structural changes in these systems and determine their
elastic limits. The deformation energy of twisted nanotube ropes contains contributions associated
not only with twisting, but also with stretching, bending and compression of individual nanotubes.
We quantify these energy contributions and show that their relative role changes with the number
of nanotubes in the rope.
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Graphitic carbon, including graphene and nanotubes,
displays an unprecedented resilience in response to in-
plane deformations[1]. Numerous experimental studies
have explored the response of nanotube ropes to axial
stress [2–5] and torsion[6, 7]. Theoretical studies have
explored the response of nanotubes to deformations in-
cluding stretching, twisting and bending[5, 8–15], and of
infinite nanotube arrays to compression[16]. These cal-
culations, mostly based on parameterized force fields and
analytical models, have established the elastic constants
and provided limited insight into the deformation behav-
ior in the plastic regime. Nanotube bundles or ropes,
which form by self-assembly of single-wall carbon nan-
otubes, should display a very different deformation be-
havior from isolated nanotubes when twisted. For one,
twisting a rope results in a combination of stretching,
twisting and bending of the constituent nanotubes[15].
Even more important is the interplay between different
deformation modes in a rope, an important example be-
ing the tensile stress at the surface of a twisted rope
that radially compresses the rope to minimize the en-
ergy. So far, little is known about the total deformation
energy and how the relative role of the different deforma-
tion modes depends on the rope size. No information is
available about the interplay between those deformation
modes in ropes of different size and about the elastic
limit and the microscopic decay mechanism of twisted
nanotube ropes.

Here we use ab initio and parameterized density func-
tional calculations to determine the deformation ener-
getics and energy density of twisted carbon nanotubes
and nanotube ropes that effectively constitute a torsional
spring. Our calculations not only identify the elastic
range and deformation energy density of twisted carbon
nanotubes and nanotube ropes, but also reveal their de-
cay mechanism in the plastic regime. We demonstrate
that the deformation energy of twisted nanotube ropes
contains contributions associated not only with twisting,
but also with stretching, bending and compression of in-
dividual nanotubes. Analysis of these energy contribu-
tions shows that their relative role changes with the num-

ber of nanotubes in the rope.

Our total energy calculations for isolated and bun-
dled carbon nanotubes are based on the ab initio den-
sity functional theory (DFT), as implemented in the
SIESTA code[17]. We used the Ceperley-Alder exchange-
correlation formalism[18] as parameterized by Perdew
and Zunger[19] and norm-conserving Troullier-Martins
pseudopotentials [20]. We utilized a double-zeta basis, in-
cluding polarization orbitals, and periodic boundary con-
ditions for all calculations. The Brillouin zone of the pe-
riodic nanotube array was sampled by a 2×2×8 k−point
grid. We limited the range of the localized orbitals in
such a way that the energy shift caused by their spatial
confinement was no more than 10 meV[21]. The charge
density and potentials were determined on a real-space
grid with a mesh cutoff energy of 100 Ry, which was suffi-
cient to achieve a total energy convergence of better than
0.1 meV/unit cell during the self-consistency iterations.
All geometries have been optimized using the conjugate
gradient method, until none of the residual Hellmann-
Feynman forces exceeded 0.04 eV/Å.

Since description of twisted nanotubes using conven-
tional periodic boundary conditions requires very large
unit cells in the axial direction, we studied deformations
caused by torsion using the DFTB[22] adaptation of a
simplified density functional theory with a local orbital
basis to systems with helical symmetry[23–25]. This total
energy functional had been applied successfully to a va-
riety of carbon structures[22] and subsequently extended
to accommodate van der Waals interactions[26], includ-
ing their proper description in graphitic systems[26]. Use
of helical symmetry, which allowed proper description of
chiral nanotubes in the past[14, 25, 27], turned out also
essential to efficiently describe the geometry and energy
changes in twisted nanotubes and nanotube ropes.

Whereas past theoretical studies have mostly in-
vestigated deformations and the deformation energy
associated with stretching and torsion of individual
nanotubes[9–14], we focus here on nanotube arrays and
ropes. Additional deformation energy is associated with
the radial compression of a rope containing aligned nan-
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FIG. 1. (Color online) Deformation energy of an individ-
ual carbon nanotube subject to stretching and torsion. (a)
Stretch energy per length ∆Es/l0 of a (10,10) nanotube as a
function of axial strain ǫ‖ = l/l0 − 1, l0 is the length of an
unstrained nanotube segment. (b) Twist energy per length
∆Et/l0 as a function of the dimensionless twist rate ǫ◦ for
an armchair (10,10) nanotube. (c) Snap shots of a deforming
(18,0) nanotube at different twist rates in side and end-on
view. (d) A possible space-filling compact arrangement of in-
dividually twisted (18,0) carbon nanotubes in end-on and side
view.

otubes. In the following we consider all these deforma-
tion modes in arrangements of the most abundant (10,10)
armchair nanotubes and their (18,0) zigzag counterparts
with the similar diameter of 1.4 nm.
Numerical results for the stretch energy ∆Es of a

(10,10) nanotube as a function of the axial strain ǫ‖ =
l/l0 − 1 are shown in Fig. 1(a). In our definition, l is
the actual and l0 the initial length of an unstrained nan-
otube segment. Our calculation has been performed in
supercell geometry with 4 primitive unit cells in the axial
direction containing 160 atoms in total. Our results, dis-
played in Fig. 1(a), indicate an initial parabolic Hook’s
law behavior

∆Es/l0 = αǫ2‖ (1)

with α≈529.9 eV/Å. This harmonic regime is followed
by a softer response and eventual plastic deformation by
dislocations[10] and fracture at strain values ǫ‖>∼ǫ‖,max.
The estimated fracture strain value ǫ‖,max≈22% is un-
likely to be achieved in reality, since finite temperature
effects and presence of defects reduce it in the experiment
to ǫ‖,max≈12% in the optimum case [2] or to even less.
Even at the reduced value ǫ‖,max = 12%, stretching nan-
otubes to the elastic limit requires an energy investment
of 3 MJ/kg, which is typical of covalently bonded solids
of light elements.

Bending a carbon nanotube is associated with the en-
ergy cost

∆Eb/l0 = β(r0/R)2 , (2)

where R is the local radius of curvature and
β≈256.6 eV/Å. Since typical values of R are significantly
larger than the radius of a (10,10) nanotube, r0 = 6.78 Å,
the bending energy is usually quite small.
Much more important is the deformation energy ∆Et

associated with twisting a nanotube about its own axis.
We first associate the angle ϕ with the axial rotation
of the nanotube cross-section along a tube segment of
length l0. For a nanotube with initial radius r0, we then
define the dimensionless twist rate ǫ◦ = ϕr0/l0 and use
radian units for ϕ. Our results for the nanotube twisting
energy ∆Et are shown in Fig. 1(b). In the elastic regime,
the torsional energy is well reproduced by

∆Et/l0 = γǫ2◦ (3)

with γ≈203.2 eV/Å. The blue solid line in Fig. 1(b) for
a circular cross-section follows Hook’s law up to a large
twist rate ǫ◦,max≈0.26. Comparing these results to those
in Fig. 1(a), we note that a similar amount of deforma-
tion energy is associated with stretching and twisting of
a nanotube. Also this idealistic prediction needs to be
revisited.
Our calculations indicate that the circular nanotube

cross-section is only metastable, since even a slight ellip-
tical distortion induces flattening of the nanotube. Snap
shots of the twist-induced nanotube flattening at differ-
ent twist rates are shown in Fig. 1(c), and a hypotheti-
cal compact 3D arrangement of individually twisted nan-
otubes is depicted in Fig. 1(d). As seen in Fig. 1(b),
the flattening is accompanied by a significant reduction
of the total energy. On the other hand, flattened nan-
otubes are stable at twist rates far exceeding the elastic
limit of the round nanotube, recovering in this way a sig-
nificant portion of the maximum twist energy. Based on
the maximum value of ∆Et/l0 for a flattened nanotube
in Fig. 1(b), we find that the deformation energy density
in the system depicted in Fig. 1(d) may be as high as
J≈3 MJ/kg.
When a finite bundle of straight nanotubes is twisted

to a rope, each individual nanotube strand deforms to a
coil of radius ρ, as shown in Fig. 2(a). As a nanotube
rope is being twisted, each nanotube strand is subject
to stretching, bending and twisting, and deforms accord-
ingly. We calculated the deformation of individual nan-
otube strands in ropes containing 2 and 6 nanotubes
using helical supercells. Our results for twist-induced
shape changes in a double-helix (2-rope) and in a 6-rope
are shown in Fig. 2(b). For those ropes, our results for
the gravimetric deformation energy density J , based on
DFTB, are presented in Fig. 2(c). These calculation have
been constrained by the assumption that the interaction
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FIG. 2. (Color online) DFTB calculation results for deforma-
tion energy of twisted carbon nanotube ropes. (a) Schematic
of a rope and the constituting nanotubes deformed to a coil.
(b) Snap shots of structural changes, including the flatten-
ing of individual nanotubes, induced by twisting of a rope
containing 2 and 6 nanotubes. (c) Gravimetric deformation
energy density J in twisted nanotube ropes as a function of
the rope twist rate ϕ/l0.

energy between neighboring nanotubes does not change
as the rope is twisted, and by the imposed helical symme-
try. In particular, we have also assumed that as a rope is
twisted, the coil radius ρ of each individual nanotube re-
mains fixed at the initial value defined by the separation
between the tube axis and the rope axis.

Also this assumption must be revisited, since it is in-
tuitively clear that tightly twisting a rope may reduce its
diameter. The equilibrium inter-tube distance, which is
reflected in the rope diameter, is determined by the pair-
wise inter-tube repulsive interaction that balances the
internal pressure inside a twisted rope. This pressure
is caused by the resistance of each individual nanotube,
which has been deformed to a coil, to twisting, stretch-
ing and bending. It is the microscopic counterpart to the
well-known fact that excess water in a wet towel can be
eliminated more efficiently by wringing than by squeez-
ing. Since the internal pressure can be very high, the
compression energy ∆Ec may reach a significant fraction
of the deformation energy of a twisted nanotube rope in
the elastic regime, prior to the onset of nanotube fusion.

To reliably estimate ∆Ec in a radially compressed
rope, we replaced the rope by an infinite triangular lattice
of (18,0) carbon nanotubes with sixfold symmetry. We
then used DFT calculations to optimize the nanotube
geometry in a wide range of inter-tube distances d far
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FIG. 3. (Color online) Structural changes and deformation
energy of laterally compressed nanotube arrays, establishing
the limits of elasticity and reversibility. (a) Compression en-
ergy per nanotube segment ∆Ec/l in an infinite nanotube
lattice as a function of the inter-tube separation d. (b) Equi-
librium geometries of stable nanotube array phases subject to
different degrees of compression.

below the equilibrium value d0(18, 0) = 17.45 Å. Our re-
sults for the compression energy per nanotube segment
are presented in Fig. 3(a) and the different shape de-
formation pathways are illustrated in Fig. 3(b). These
results not only provide an estimate of the compression-
related deformation energy capacity, but also help us to
identify the limits of the elastic regime of deformations
and to characterize the plastic deformations outside this
regime.
Assuming that the compression energy ∆Ec may be

decomposed into pairwise inter-tube interactions, we con-
sider in the linear regime of small deformations the sim-
plified expression

∆Ec/l0 = δǫ2⊥ (4)

for a pair of nanotubes subject to the strain ǫ⊥ = 1−d/d0
normal to their axes. Our results in Fig. 3 indicate that
the compressed nanotube lattice exhibits very complex
structural changes and may deform along different path-
ways, which we label A, B and C. We can infer from
Fig. 3(a) that compression along any of these pathways
is always energetically less costly than that of a lattice
of nanotubes with their equilibrium geometry for d > d0
artificially frozen in.
Maintaining the sixfold symmetry of the lattice along

pathway A, the circular cross-section of each nanotube
first changes to a hexagon (A1) and then a star with six-
fold symmetry (A2) under increasing pressure. We note
that the deformation energy associated with nanotube
compression may reach the same order of magnitude as
the deformation energy associated with stretching and
twisting of nanotubes. When subject to the maximum
normal strain ǫ⊥,max≈19% at d = 14.1 Å, correspond-
ing to a pressure >

∼30 GPa, the structure collapses as
neighboring tubes start connecting by covalent bonds.
Interestingly, structure A1 may change under compres-

sion to a similar structure B2, which does not sponta-
neously recover the initial nanotube structure with a cir-
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cular cross-section under zero pressure. Rather, it relaxes
to a different structure B1 with a star cross-section. Co-
valent inter-tube interaction along the B pathway sets
on at the critical normal strain ǫ⊥≈21%, similar to the
A pathway.
The energetically least costly compression pathway C

is initiated by first applying anisotropic pressure. With
increasing pressure and decreasing inter-tube distance,
the nanotube cross-section deforms to an ellipse (C1) and
then a ribbon (C2) at similar critical normal strain values
as found for structures A and B. As seen in Fig. 3(a),
compression thus far along pathway C requires much
less energy than along pathways A and B. Whereas
the compression energy in the elastic regime is repro-
duced well by Eq. (4) with δ(A) = 92.6 eV/Å for branch
A, a much smaller value δ(C)≈25.0 eV/Å may be used
to estimate energy changes in branch C. The effec-
tive pressure normal to the tube axis does not exceed
3 GPa and the minimum inter-wall distance maintains a
nearly constant value ≈2.9− 3.0 Å in this regime. Only
further compression to a fully collapsed ribbon (C3) in
the inelastic regime comes at a somewhat higher energy
cost. Under still higher pressures, collapsed nanotubes
should spontaneously transform to graphene nanoribbons
of uniform width, especially when exposed to hydrogen
atmosphere[28].
In a rope containing a finite number of N nanotube

strands, the mechanical deformation energy contains a
combination of stretching, twisting, bending and com-
pression components. In the following, we consider a
rope segment of initial axial length l0, same as that
of a straight unstrained constituent nanotube. We fur-
ther consider the ideal case, where the structure of the
clamped rope ends does not change and the rope is
twisted as a whole. The energy change associated with
twisting this macroscopic rope about its axis, a system
too large for atomistic calculations, can be estimated us-
ing continuum elasticity expressions in Eqs. (1)-(4) for
the individual energy terms. This treatment ignores
the atomic structure of the individual nanotube strands,
which are represented by flexible cylinders with equilib-
rium inter-tube distance d0. Upon twisting, each cylin-
der i is being deformed to a coil of radius ρi, as seen in
Fig. 2(a). The total energy investment to twist a rope
segment may then be expressed as

∆E/l0 = α

N
∑

i=1

ǫ2‖,i + β

N
∑

i=1

(r0/Ri)
2 +Nγǫ2◦ + δ

∑

i<j

ǫ2⊥,ij ,

(5)
where the summation in the fourth term extends only
over nearest-neighbor nanotube pairs ij, and

ǫ⊥,ij = 1− dij/d0 . (6)

Even though l0 does not change as the rope is twisted,
each individual nanotube strand is being subject to the
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FIG. 4. (Color online) Contribution of individual terms of
Eq. (5) towards the deformation energy density J in nanotube
ropes with 2, 7 and 19 strands. Solid dots terminate branches,
where the elastic limit has been reached first.

axial strain

ǫ‖,i =
√

1 + (ρiϕ/l0)2 − 1 , (7)

when each initially straight tube deforms to a coil within
a rope that is subject to the twist rate ϕ/l0. We note
that the twist rate of each individual nanotube ϕ/l0 is
the same as that of the entire rope. Finally, the bending
radius of each coil is given by[29] Ri = ρi[1+(l0/(ϕρi))

2].
Obviously, the deformation energy could be increased
further if nanotubes within a rope could be twisted indi-
vidually.
To estimate the deformation energy of a twisted nan-

otube rope, we optimize the inter-tube distances within
the rope by minimizing the energy density ∆E/l0 in
Eq. (5) for a given twist rate ϕ/l0. The elastic response of
the system results from the interplay between all compo-
nents. For selected nanotube ropes, the total gravimetric
deformation energy density J as well as the individual en-
ergy components are shown in Fig. 4. Our energy decom-
position provides not only an estimate of the maximum
deformation energy density, but also allows us to identify
the deformation channels that limit the elastic regime in
each individual rope.
Our results for J in ropes of 2≤N≤19 nanotubes are

presented in Fig. 2(c). For (10,10) nanotubes, we used
the equilibrium inter-tube distance d0 = 16.73 Å and
the value δ = 25.0 eV/Å corresponding to the energet-
ically least costly C pathway in Fig. 3. The end points
of the continuum elasticity results in Fig. 2(c) and Fig. 4
indicate the rope twist rate ∆E/l0, at which either the
(experimental) stretching limit ǫ‖,max≈12% or the twist
limit ǫ◦,max≈0.26 of individual tubes, or the compression
limit ǫ⊥,max≈19% within the rope would be exceeded.
Interestingly, the way the elastic limit is reached differs
from rope to rope.

Our results in Fig. 4 show that the deformation energy
at low twist rates is dominated by the twist energy, in-
dependent of the rope size. These results also show that
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the thinnest ropes with N≤4 nanotubes should fracture
by torsion first. We find that stretching and compres-
sion contributions gain significance in wider ropes with
4<∼N<

∼19, where the elastic regime becomes limited by
compression strain. This is intuitively clear from the ev-
eryday experience that wringing is more effective when
the wet object is long and narrow. As seen in Fig. 4, in
very wide ropes with N>

∼19 nanotubes, the contribution
of stretching grows significantly and becomes comparable
to that of compression and twisting. In these wide ropes,
according to Fig. 4, the nanotubes in the outermost rope
layer break by stretching first, well before other decay
mechanisms including compression would occur. In all
ropes considered here, we found the bending deforma-
tion energy to be negligible.
In conclusion, we determined the deformation mecha-

nism and deformation energy density in arrays of twisted
carbon nanotubes and nanotube ropes which constitute
a torsional spring. Using ab initio and parameterized
density functional calculations, we identified structural
changes in these systems and determined their elastic lim-
its. We found that the deformations of twisted nanotube
ropes are determined by an interplay between twisting,
stretching, bending and compression of individual nan-
otubes. We quantified the corresponding energy contri-
butions and showed that their relative role changes with
the number of nanotubes in the rope.
We acknowledge valuable contributions to the compu-

tational approach by Dong-Bo Zhang and Traian Du-
mitrica. This work was funded by the National Science
Foundation Cooperative Agreement #EEC-0832785, ti-
tled “NSEC: Center for High-rate Nanomanufacturing”.
GS was partly supported by the European Centre for
Emerging Materials and Processes Dresden (ECEMP,
project number: 10 13857/2379). The first author’s visit
to MSU was partially funded by the DAAD. Computa-
tional resources for this project were provided by the
ZIH Dresden and the Michigan State University High-
Performance Computer Center. We thank T. Moore for
assistance with the visualization of structures.

∗ E-mail: tomanek@pa.msu.edu
[1] A. Jorio, M. Dresselhaus, and G. Dresselhaus, eds.,

Carbon Nanotubes: Advanced Topics in the Synthesis,

Structure, Properties and Applications, Topics in Applied
Physics No. 111 (Springer, Berlin, 2008).

[2] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly,
and R. S. Ruoff, Science 287, 637 (2000).

[3] M.-F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys.
Rev. Lett. 84, 5552 (2000).

[4] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu,
D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl.
Phys. Lett. 74, 3803 (1999).

[5] F. A. Hill, T. F. Havel, and C. Livermore, J. Micromech.
Microeng. 19, 094015 (2009).

[6] D. Li, W. F. Paxton, R. H. Baughman, T. J. Huang, J. F.
Stoddart, and P. S. Weiss, MRS Bull. 34, 671 (2009).

[7] J. Foroughi, G. Spinks, G. Wallace, J. Oh, M. Kozlov,
S. Fand, T. Mirfakhrai, J. Madden, M. K. Shin, S. J.
Kim, and R. Baughman, Science 334, 494 (2011).

[8] G. Overney, W. Zhong, and D. Tomanek, Z. Phys D:
Atoms, Molecules and Clusters 27, 93 (1993).

[9] B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys.
Rev. Lett. 76, 2511 (1996).

[10] B. I. Yakobson, Appl. Phys. Lett. 72, 918 (1998).
[11] B.-W. Jeong, J.-K. Lim, and S. B. Sinnott, Appl. Phys.

Lett. 90, 023102 (2007).
[12] B.-W. Jeong, J.-K. Lim, and S. B. Sinnott, J. Appl.

Phys. 101, 084309 (2007).
[13] D. Qian, W. K. Liu, and R. S. Ruoff, Comp. Sci. Technol.

63, 1561 (2003).
[14] J. Alford, B. Landis, and J. Mintmire, Int. J. Quantum

Chem. 105, 767 (2005).
[15] F. A. Hill, T. F. Havel, and C. Livermore, Nanotechn.

20, 255704 (2009).
[16] C. Q. Ru, Phys. Rev. B 62, 10405 (2000).
[17] J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Jun-
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