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Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method
is proposed to overcome dephasing, in which the modulation of a modest (∼ O(10 kG)), axial, uni-
form magnetic field in the acceleration channel leads to densification of the plasma through magnetic
compression, enabling direct, time-resolved control of the plasma wave properties. The methodology
is broadly applicable and can be optimized to improve the leading acceleration approaches, including
plasma beat-wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic
compression are compared to other proposed techniques to overcome dephasing.

PACS numbers:

Introduction.— Charged-particle acceleration in
plasma employs short, intense laser pulses or high
energy electron bunches to excite longitudinal plasma
waves capable of accelerating relativistic particles to
high energies over very short distances [1–6]. One major
factor limiting energy gain in plasma-based accelerators
is phase slippage, in which a particle eventually outruns
the segment of the wave providing a positive acceler-
ating force (see, e.g., Ref. [3]). Methods to improve
gain require that particles remain in phase with the
forward accelerating component of a plasma wave for
an extended period of time. The surfatron employs a
static, transverse applied magnetic field to control the
axial phase of an accelerating particle in a beat-wave
accelerator [7, 8], while a stationary, axial plasma density
gradient can be used to synchronize the advance of a
wakefield and an accelerating ultrarelativistic electron
[9–13]. The use of active media to modulate the wake
phase velocity has also been proposed [14].

In this Letter, we propose a new method to improve
energy gain by modulating the phase velocity, vph, of an
accelerating plasma wave using an externally generated,
time-varying, uniform axial magnetic field. Within a
bounded parameter regime, uniform transverse magnetic
compression of the plasma column leads to a tunable,
time-varying density profile. With compression, vph can
be increased beyond the subluminal driver pulse velocity
in the cases of plasma beat-wave (PBWA), laser wakefield
(LWFA), and plasma wakefield (PWFA) acceleration (up
to and even beyond c). Static, axial magnetic fields have
been shown to enhance electron injection, trapping, beam
stability, optical guidance, and energy gain in LWFA [15–
17] and PBWA [18]; however, this is the first time a time-
varying field is proposed as a precise control mechanism
for the plasma wave dynamics.

For PBWA, dephasing is mitigated with only a small
fractional density increase, and no cross-beam electron
motion is induced, unlike the surfatron [7]. For wakefield
acceleration, the density increase required is much more
gradual compared to the axial density gradient method
[9–13], and the wakefield amplitude actually increases
with propagation distance in some cases. Also, gener-

ating a time-varying, uniform density profile with mag-
netic compression should be technologically considerably
easier than generating a stationary density gradient.
Plasma beat-wave acceleration with compression.— In

PBWA, two co-propagating lasers combine to form a sub-
luminal ponderomotive beat-wave. Here, the laser fre-
quencies ω1,2 = ωd ± ∆ω/2 and wavenumbers k1,2 =
k0 ± ∆k/2, with ∆ω = ωp, ∆k ≡ kp, ωd ≫ ωp, and
ωp is the plasma frequency. For simplicity, we consider
the 1D limit, i.e., rs ≫ k−1

p , where rs is the character-
istic laser spot size. The beat-wave resonantly drives
a long (many k−1

p ), high-amplitude plasma wave whose
phase velocity is set by the driver group velocity, i.e.,
vph = ∆ω/∆k ≃ c(1 − ω2

p/2ω
2
d) [6]. For PBWA, au-

toresonant phase-locking of driven plasma waves to fre-
quency chirped laser beat-waves has been shown to drive
plasma waves to high amplitudes [19, 20], but the de-
phasing problem is not addressed. Our proposed method
modulates both ωp and vph.
Consider homogeneous, uniformly magnetized plasma,

i.e., B = B(t)ẑ, where B(t) changes with time. For ex-
ample, this could be realized for plasma inside a solenoid.
Magnetization implies that the plasma density n ∝ |B|.
For slow variation of plasma parameters, a relativistic
plasma wave, i.e., vph = ω/k . c, with wavevector k ‖ B,
obeys the cold plasma eikonal equation, ω = ωp [21].
Since ω2

p ∝ n ∝ B, we have ωp = ωp(t), while k remains
constant (neglecting nonlinear effects [3]), since the com-
pression is perpendicular to the wavevector. Note, when
vph/c ≡ βph ≈ 1, only small changes in n are needed to
produce large changes in γph ≡ (1 − β2

ph)
−1/2.

The axial dynamics of a relativistic electron interacting
with a sinusoidal potential are given by [22]:

dγ

dt
=

(

1− 1

γ2

)1/2 (
eE

mec

)

cos ξ, (1)

dξ

dt
= ck

(

1− 1

γ2

)1/2

− Ψ̇, (2)

where ξ = kz − Ψ(t), γmec
2 is the electron energy in

the laboratory frame, e is the elementary charge, and
Ψ(t) =

∫ t

0
ω(k; t′) dt′. Because minimal compression is
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anticipated, the electric field amplitude E ≈ const.
The compression profile required to overcome phase

slippage in PBWA can be calculated from Eqs. (1) and
(2). Suppose Ψ(t) is configured such that a stable fixed
point arises in the phase space associated with the rest
frame of the accelerating plasma wave. Then, combin-
ing Eqs. (1) and (2) by eliminating the square root gives
γ̇ = Φ0(ξ̇ + Ψ̇) cos ξ, with Φ0 ≡ eE/kmec

2. If ξ = ξ0,
corresponding to the fixed point, there exists an energy-
like integral of motion: d/dt(γ − Φ0Ψcos ξ0) = 0. Equa-
tion (2), with ξ̇ = 0, yields the necessary plasma compres-
sion profile. Noting that Ψ̇ = ωp(t), and that the distance
traversed by a phase-locked particle D(t) = (Ψ−Ψ0)/k,
the required normalized density profile, ñ = ω2

p/ω
2
p0, is:

ñ[D(t)] =
γ2
0

[

(γ0 +Φ0kD cos ξ0)
2 − 1

]

(γ2
0 − 1) (γ0 +Φ0kD cos ξ0)

2
, (3)

where γ0 = γph,0 implies exact initial wave-particle res-
onance. Equation (3) is monotonic in D, asymptotically
approaching ñmax = γ2

0/(γ
2
0 − 1) as D → ∞, at which

point vph → c. For instance, injection of a 2 MeV elec-
tron bunch (γ0 ≈ 4) requires a peak density shift of only
ñmax ≈ 1.07 to maintain proper phasing indefinitely (in
principle) as the bunch accelerates. Equation (3) can be
expressed as an explicit function of time by integrating
D(t) =

∫ t

0
v dt′, with v(t) the velocity of a relativistic

particle accelerated by the constant force attributable to
the fixed wave-particle relative phase, yielding

D(t) =
1

α





√

(

αct+
√

γ2
0 − 1

)2

+ 1− γ0



 , (4)

with α = eE cos ξ0/mec
2. The calculation assumes zero

transverse momentum, which equates to a compression
profile optimized to trap relativistic particles with a nar-
row transverse energy spread.
Peak acceleration occurs when ξ0 = 0, for which an

electron starting at ξ = 0 obeys γ − Φ0Ψ = const. In
fact, for a wave of specified E and k, this is the max-

imum achievable acceleration, in which the electron re-
mains in phase with the peak accelerating field. More
generally, choosing 0 < ξ0 < π/2 in Eq. (3) enables elec-
tron trapping over a broader range of initial electron en-
ergies. Since the fixed point in the wave rest frame, ξ0,
lies ahead of the peak accelerating field, at ξ = 0, some
particles that slip behind ξ0 can catch up to ξ0 once again.
The increased gain arises from maximizing the de-

phasing length scale, Ld ≃ (2/π)(ω2
d/ω

2
p)λp, with λp ≈

2πc/ωp [3]. The part of the plasma wave furthest
upstream from the driver pulse will become turbu-
lent through ion instabilities on the time scale ωpi =
(4πne2/Mi)

1/2, with Mi the ion mass [6]. Then, the
new, turbulent length scale over which positive accel-
eration is achieved becomes Lt ≃ 2πc/ωpi. The ratio

of achievable gains with and without compression, G̃, is
simply the ratio of the two length scales, G̃ = Lt/Ld ≃
(π/2)(ωp/ωpi)ω

2
p/ω

2
d. Thus, compression offers the great-

est benefit to PBWA employing heavier plasma ions. For
example, G̃ > 1 for any ωd < 20.6ωp using singly-ionized
argon, or ωd < 24.8ωp for singly-ionized krypton.
Slight compression does not detune substantially the

driver from the optimal resonant plasma response, so
plasma wave generation can continue beyond Lt. If the
pump is not depleted after length Lt, then the gain scales
with the pump depletion length, Lpd ≃ (ω2

d/ω
2
p)λp/a

2
0,

with a0 ≡ eA0/mec
2, and A0 the characteristic initial

vector potential magnitude of the laser drivers [3].
Wakefield acceleration with compression.— Mitigating

phase slippage through magnetic compression in (linear)
wakefield acceleration, including LWFA and PWFA, is a
somewhat different process. Here, a time-varying density
profile during wake excitation results in an axial gradient
in the plasma wake parameters, which was not the case
with PBWA. Electron dephasing is often the dominant
effect limiting energy gain in wakefield acceleration when
the driver amplitude is no more than weakly relativistic,
i.e., a < 1 for LWFA [13], or nb/n < 1 for PWFA, where
nb is the peak driver beam density [3].
In wakefield acceleration, a subluminal wakefield is

excited by an ultrarelativistic driver, i.e., γd = (1 −
β2
d)

−1/2 ≫ 1, with βd = vd/c, and vd is the driver
pulse velocity. For PWFA, the longitudinal velocity of
the electron beam driver is unaffected by perpendicu-
lar magnetic compression. Because only modest den-
sity changes will be needed, the laser pulse group ve-
locity, vgr, is mostly unaffected as well, since a change
in plasma frequency, ∆ωp, leads to a change in wave
phase velocity ∆vph/vph ≃ ∆ωp/ωp, which is large com-
pared to the change in laser group velocity, ∆vgr/vgr ≃
(ωp/ωd)

2∆ωp/ωp, where ωd is the laser frequency, and
ωp/ωd ≪ 1 in underdense plasma. Thus, both PWFA
and LWFA exhibit vd ≈ const.
We follow the technique of Ref. [9] to derive the com-

pression profile (in the 1D limit) needed to maintain
a luminal wakefield phase front initially at a distance
wλp0 behind the lead pulse, with the plasma wavelength
λp = 2πvd/ωp, and w an arbitrary constant. This lu-
minal front will remain approximately in phase with an
accelerating ultrarelativistic bunch of electrons also trav-
eling at velocity v ≃ c. First, we review the calculation of
the optimal stationary, but inhomogeneous, axial density
profile required to perform the same task. The rate of ad-
vance of the wake is given by ∆zw/∆t = vd−w∆λp/∆t =
vd − wvd(∂λp/∂n)(dn/dz). An ultrarelativistic particle
advances at ∆z/∆t ≃ c. Setting the two rates of advance
equal gives the equation for the optimized density profile:

dωp

dz
=

ω2
p(z)

2πwvd

(

β−1
d − 1

)

, (5)

where (1/n)dn/dz = (2/ωp)dωp/dz was used. We define



3

the overtaking time, T ≡ ct0/(c − vd), and the overtak-
ing length, L ≡ cT , where t0 = 2πw/ωp0 is the particle
injection time. After time T , an ultrarelativistic elec-
tron overtakes the slower lead pulse. In dimensionless
variables, z̃ ≡ z/L and ω̃p ≡ ωp/ωp0, Eq. (5) becomes

dω̃p

dz̃
= β−2

d ω̃2
p, (6)

which has the solution, ω̃p = (1 − β−2
d z̃)−1. This is the

well-known stationary axial density profile to sustain the
luminous phase front [9], and, since β−2

d > 1, the density
always becomes singular just prior to z̃ = 1.
For a uniform plasma densifying through magnetic

compression, ∆zw/∆t = vph−w∆λp/∆t. At each point,
the wakefield wavevector satisfies k[zd(t)] = ωp(t)/vd [3],
where zd(t) = vdt is the axial position of the driver am-
plitude maximum at time t. For a point in the electron
trajectory within the wake, z(t), k(z) has been set by
the driver at a previous time, t′ = (t − t0)/βd, whereas
ωp has increased through densification since t′. Accord-
ingly, vph[z(t)] = vd ωp(t)/ωp(t

′). Also, ∆λp/∆t →
(∂λp/∂n)(dn/dt). Setting equal the rates of advance of
the wake and the accelerating electron gives

dωp

dt
=

ω2
p(t)

2πw

[

β−1
d − ωp(t)

ωp[(t− t0)/βd]

]

, (7)

in which ω̇p now depends on ωp at a previous time. In
dimensionless variables, t̃ ≡ t/T and ω̃p, Eq. (7) becomes

dω̃p

dt̃
=

ω̃2
p

χ

[

β−1
d − ω̃p(t̃)

ω̃p[(t̃− χ)(1 + χβ−1
d )]

]

, (8)

where χ ≡ 1 − βd ≪ 1. Since χ ≪ 1, Eq. (8) can be
approximated by expanding the past-time form of ω̃p

about χ = 0: ω̃p[(t̃ − χ)(1 + χβ−1
d )] ≈ ω̃p(t̃) − χ(1 −

t̃β−1
d )(dω̃p/dt̃). Plugging this into Eq. (8), expanding

the denominator, and rearranging yields

dω̃p

dt̃
≈

β−2
d ω̃2

p

1 + ω̃p(1− t̃β−1
d )

. (9)

For an ultrarelativistic driver, βd → 1, and Eq. (9) turns
out to be negligibly dependent on the driver velocity.
Figure 1 shows the solutions for ω̃2

p = ñ correspond-
ing to both methods, given by Eqs. (6) and (9), in the
limit, βd → 1. It is clear that magnetic compression
requires substantially less densification than a station-
ary, axial density gradient to maintain a luminal wake
front. Moreover, the optimized compression profile does
not exhibit a density singularity as the accelerating elec-
tron approaches the driver pulse, unlike the optimized
stationary density gradient profile.
In PWFA, magnetic compression does not produce the

loss of wakefield amplitude with propagation distance
exhibited by a stationary density gradient [9]. From
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FIG. 1: (color online) Optimized density profiles for: (a) the
axial density gradient method (dashed line), with Q = z/L
signifying an axially inhomogeneous density profile; and (b)
the perpendicular magnetic compression method (solid line),
with Q = t/T signifying a time-varying, but axially uniform,
density profile. Note that L = cT .

Eq. (16) of Ref. [9], the peak electric field Emax ∝
(nb/n)n

1/2. So, at fixed nb, a wakefield excited in a
stationary axial density gradient obeys Emax ∝ n−1/2,
while magnetic compression causes the background and
beam to densify together, i.e., nb/n = const, leading to
Emax ∝ n1/2 as n(t) increases in time. Remarkably, al-
though Emax increases with propagation distance in com-
pressing plasma, the driver depletion length, Ldp, is es-
sentially unaffected. From Ref. [3], Ldp ≈ γdmec

2/eE−,
where E− = Emax/Rt is the retarding electric field ex-
cited within the driver, and Rt is the transformer ra-
tio. For a long, triangular-shaped beam with a linear
density rise over the length Lb = Nbλp, with Nb > 1,
followed by a sharp termination, the transformer ratio
is given by Rt ≃ πNb ∝ ωp [23]. Hence, the ratio
Emax/Rt = const, and thus, Ldp = const. Also, the aver-
age electric field an ultrarelativistic particle feels over the
total overtaking length for the compression scheme, cal-
culated numerically from Fig. 1, is given by 〈E〉comp ≈
1.5Emax,0. In contrast, 〈E〉grad = 0.5Emax,0 for a sta-

tionary density gradient. Accordingly, G̃ for PWFA in
uniform plasma with and without compression is given
by, G̃ ≃ 1.5Ldp/Ld ≃ (3π/8)[(Nb/γd)(n/nb)]0, where

Ld ≃ (2/π)γ2
dλp [3]. Thus, G̃ is large for long driver

pulses, low driver energies, and modest beam densities.
Even when compared to an axial density gradient, com-
pression still offers a threefold gain improvement due to
the enhanced wakefield amplitude, 〈E〉comp/〈E〉grad ≈ 3.

In LWFA, overall performance could be impacted neg-
atively as compression alters the plasma response to
a laser pulse of fixed dimensions. However, while the
wakefield amplitude is maximized at a particular laser
pulse length, Lℓ ∝ λp, the density profile prescribed by
Eq. (9) can be utilized in a way that minimizes the effect
of detuning. For example, a circularly polarized Gaus-
sian pulse produces a linear wakefield response, Emax ∝
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E0a
2
0kpLℓ exp(−k2pL

2
ℓ/4) [3], where E0 = cmeωp/e, kp ≈

ωp/c, and Emax is greatest when kpLℓ =
√
2. In terms

of x ≡ kpLℓ ∝ ωp, Emax ∝ x2 exp(−x2/4). By choos-
ing ωp0 to be about 85% the optimal plasma frequency,
ωp,opt =

√
2Lℓ/c [found by maximizing the integral,

(1/a)
∫ a+1.7

a
x2 exp(−x2/4) dx, where 1.7 is the approxi-

mate increase in kpLℓ prescribed by Eq. (9)], an accel-
erating electron will, on average, experience 〈E〉comp ≈
0.9Emax for fixed Lℓ. Thus, the gain improvement over
a stationary, uniform plasma is simply G̃ ≃ 0.9Lpd/Ld ≃
0.9(ω3

p0/〈ωp〉3)(1/a20), where Ld and Lpd were given in
the previous section, and a20 ≪ 1 is assumed. For the
compression profile in Fig. 1, 〈ωp〉3/ω3

p0 ≈ 4.3, implying

that G̃ > 1 for all a0 < 0.46. The focusing forces pro-
vided by relativistic optical guiding and density channel
guiding scale like n and n2, respectively [3]. Thus, mag-
netic compression also could enhance the suppression of
laser pulse diffraction, improving further on the bene-
fits established in channel formation studies employing a
static, axial magnetic field [17].

Discussion.— In order that variations in B(t) translate
to proportional changes in the plasma density, we require
that both plasma species be magnetized, i.e., ωcj/2πνj &
1 for species j : {e, i}, where ωcj = qjB/mjc is the cy-
clotron frequency, and νj is the collision frequency, as-
suming electrons and ions are initially in thermal equi-
librium and isotropic. The minimum B required is that
which marginally magnetizes the ions, or ωci/2πνi ≈ 1.
For instance, assuming hydrogen plasma, the initial pa-
rameters B = 5× 104 G, n = 1016 cm−3, and T = 20 eV,
where T = Te = Ti is the plasma temperature, lead to
ωci/2πνi ≈ 1, and ωce/2πνe ≈ 30. As B(t) evolves, the
induced azimuthal electric field, Eφ(r) = −rḂ/2c, causes
a radial drift of both electrons and ions such that the
density n ∝ B. Since this drift is a gyro-averaged phe-
nomenon, averaging over the continuum of particle gy-
rophases will lead to uniform densification of the plasma,
even on time scales short compared to 1/ωci.

There still can remain a separation of timescales be-
tween that of electron space charge oscillations, ωp, and
that of magnetic gyration, ωce. The parallel electro-
static plasma response is unaffected by the magnetic
field, whereas the perpendicular electrostatic response
is characterized by the upper hybrid frequency, ωuh =
√

ω2
p + ω2

ce ≈ ωp(1.0 + 0.5ω2
ce/ω

2
p). The example pa-

rameters from the previous paragraph give ωuh ≈ ωp to
within about 1%. For the ordering ωd ≫ ωp ≫ ωce,
the laser ponderomotive force is also unchanged by the
magnetic field [24]. Thus, wave excitation is virtually
unaffected by B on such short timescales (of O(ω−1

p ) du-
ration), as Ref. [16] confirmed in LWFA simulations using
even stronger (1.2 MG) magnetic fields. While a strong
axial magnetic field enhances electron self-injection in the
nonlinear blowout regime by suppressing transverse elec-
tron motion [16], the processes of electron capture and

trapping in the linear regimes considered here should not
be affected significantly by the presence of more modest
magnetic fields on such short (O(ω−1

p )) timescales.

With magnetic compression, some amount of perpen-
dicular heating can be expected, leading to potential
anisotropy-driven instabilities. The fastest-growing un-
stable modes, excited by the electron whistler instability
when T⊥ > T‖, exhibit growth rates Γ . 0.01ωce for the
parameters considered here [25]. For the sample param-
eters listed above, νe/Γ ≈ 1, so the instability is sup-
pressed to some extent by collisional isotropization. In
addition, the instability is resonant with bulk electrons,
thus interfering minimally with the dynamics of the ul-
trarelativistic Langmuir wave and accelerating electrons.

Practical realization of these methods might employ
Helmholtz coils surrounding the acceleration stage of an
existing plasma-based accelerator configuration. For our
example parameters, one has λp ≈ 330 µm, Ld ≈ 2 cm,
and Ldp ≈ 17 cm, assuming a PWFA configuration with
γd = 10, nb0/n0 = 0.1, and Nb = 10. The potential gain
improvement is G̃ ∼ O(10). A 10 cm-radius coil arrange-
ment, each coupled to a 10 kΩ resistive load, can exhibit
sufficiently short L/R times (O(10−11 s)) to produce sig-
nificant variations in B on timescales comparable to the
beam transit time (O(10−10 s)).

The primary advantage of magnetic compression is
that the solution to the dephasing problem is reduced
to the task of shaping the magnetic coil current profile,
which is easier technologically than controlling a spatially
varying density profile. Also, shot-to-shot tailoring only
requires reprogramming the current source. In contrast,
Ref. [13] notes that optimal stationary density profiles
may be difficult to realize experimentally, while shot-to-
shot adjustments may require significant physical manip-
ulation of the gas injection components. The compression
itself also increases the wave amplitude [21], increasing
gain further. Finally, besides some radial focusing of ac-
celerating electrons on-axis, no other cross-beam electron
motion is introduced, unlike the surfatron [7].

In summary, a new method is proposed to mitigate de-
phasing in leading plasma-based acceleration techniques,
where the modulation of an axial, uniform magnetic
field leads to plasma densification through magnetic com-
pression, enabling direct, time-resolved control of the
plasma wave. Optimized compression profiles and result-
ing energy gain enhancements are calculated for PBWA,
PWFA, and LWFA. The benefits of compression are com-
pared to other proposed techniques to control dephasing.
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