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We demonstrate, via simulations of asymptotically reduced equations describing rotationally con-
strained Rayleigh-Bénard convection, that efficiency of turbulent motion in the fluid bulk limits
overall heat transport and determines the scaling of the nondimensional Nusselt number Nu with
the Rayleigh number Ra, the Ekman number E and the Prandtl number σ. For E ≪ 1 inviscid

scaling theory predicts and simulations confirm the large Ra scaling law Nu − 1 ≈ C1 σ
−

1

2Ra
3

2 E2,
where C1 is a constant, estimated as C1 ≈ 0.04 ± 0.0025. In contrast, the corresponding result for
nonrotating convection, Nu − 1 ≈ C2Ra

α is determined by the efficiency of the thermal boundary
layers (laminar: 0.28 . α . 0.31, turbulent: α ∼ 0.38). The 3/2 scaling law breaks down at
Rayleigh numbers at which the thermal boundary layer loses rotational constraint, i.e., when the
local Rossby number ≈ 1. The breakdown takes place while the bulk Rossby number is still small
and results in a gradual transition to the nonrotating scaling law. For low Ekman numbers the
location of this transition is independent of the mechanical boundary conditions.

PACS numbers: 47.32.Ef,47.55.pb,47.27.-i

Introduction: Rapidly rotating convection is common
in stars and planets, and is present in Earth’s oceans and
liquid metal core. Such systems remain beyond the reach
of laboratory experiment and direct numerical simulation
(DNS). Rotating Rayleigh-Bénard convection (RBC) af-
fords an excellent model for studying rotationally influ-
enced buoyancy-driven flow. In RBC, fluid is confined
between parallel horizontal plates a distance H apart,
rotating rigidly about the vertical with constant angular
velocity Ω. Convection is driven by a fixed destabilizing
temperature difference ∆T . Three nondimensional con-
trol parameters specify the system, the Rayleigh, Ekman,
and Prandtl numbers, defined by

Ra ≡
gαT∆TH3

νκ
, E ≡

ν

2ΩH2
, σ ≡

ν

κ
.

Here ν is the kinematic viscosity, κ is the thermal dif-
fusivity, g is the gravitational acceleration and αT is
the thermal expansion coefficient. The Rayleigh number
provides a dimensionless measure of the thermal forc-
ing, while the Ekman number measures the importance
of viscosity relative to rotation. The convective Rossby
number Ro ≡ E

√

Ra/σ =
√

gαT∆T/4HΩ2 thus mea-
sures the importance of thermal forcing relative to rota-
tion. Rotationally constrained systems are characterized
by Ro ≪ 1.

Understanding the scaling dependence of global fluid
properties on the independent parameters {Ra,E , σ} is
critical for identifying regime transitions and potential
extrapolation to natural environments. An important
quantity in this regard is the global heat transport as
measured by the Nusselt number Nu ≡ qH/ρ0cpκ∆T ,
where q is the total heat flux and ρ0cp is the volumetric
heat capacity. At large Ra the convective scaling law in

a given flow regime assumes the general form

Nu − 1 ≈ C(σ)RaαEβ , (1)

where the exponents α and β measure the marginal con-
vective heat transport (efficiency) with respect to differ-
ential increases in Ra and E . In general, the values of
α, β, C lack universality and take different values in dif-
ferent parameter regimes, indicating changes in the dom-
inant underlying physics.

In nonrotating or rotationally unconstrained convec-
tion (Ro ≫ 1), Nu is independent of E , and hence
β ≈ 0. The determination of the remaining exponent
α has a long history. The theory of Malkus [1] rests
on the premise that a thin laminar thermal boundary
layer with temperature drop ∆T/2 remains marginally
stable and launches plumes into a well-mixed deep inte-
rior. In this model the heat flux, q = Nuρ0cpκ∆T/H is
independent of H , and hence α ≈ 1/3 [1, 2]. A more
comprehensive model introduced recently by Grossmann
& Lohse [3] yielded 0.28 . α . 0.31, in excellent agree-
ment with modern experiments [4, 5]. When the shear
across the viscous boundary layers at top and bottom due
to the turbulent flow in the interior becomes sufficiently
large, these layers become themselves turbulent resulting
in α = 1/2 [6], albeit with logarithmic corrections owing
to the development of a thermal sub-layer which acts to
throttle heat transport and yields an effective exponent
close to 0.38 [6, 7].

When Ro ≪ 1, geostrophic balance and the Taylor-
Proudman effect [8] favor invariance along the rotation
axis thereby suppressing global heat transport relative to
nonrotating RBC. In particular, the mean temperature
gradient in the layer midplane saturates as Ra increases
[9, 10], in contrast to nonrotating RBC where it becomes
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small or vanishes as Ra increases [11, 12]. The tempera-
ture drop across the thermal boundary layers at top and
bottom is therefore smaller than in nonrotating RBC and
their structure differs [10]. As we show below, this results
in heat transport that is throttled in the bulk instead of
the thermal boundary layers, although the exponent is in
fact larger: α > 1.

Some debate exists in the literature over the evidence
for a low-Ro scaling law when Ra is well beyond critical
(but Ro ≪ 1). Experiments [7, 13–17] barely extend
into the low Ro regime and suggest that 1 . α . 3 for
the explored range 10−6 ≤ E , 103 ≤ Ra ≤ 109. Based
on DNS with no-slip boundaries, King et al. [18] argue in
favor of depth-independent heat flux as in the approach of
Malkus [1] and propose the scaling exponents α = 3, β =
4 so that Ra3E4 ∼ H . In contrast, stress-free boundaries
yield distinctly different exponents, (α, β) ≈ (6/5, 8/5)
[19].

Linear stability theory for rotating RBC with both
stress-free and no-slip boundaries shows that in the limit
of strong rotation (E → 0) the critical Rayleigh num-
ber Rac for the onset of convection increases according
to Rac ∝ E−4/3 [20]. Since for Rac ≪ Ra . Rat (see
below), Nu is expected to depend only on Ra/Rac, it
follows that β = 4α/3 and hence that Eq. (1) becomes

Nu − 1 ∝ (RaE4/3)α. However, in the no-slip case ro-
tationally constrained asymptotic scaling laws may not
set in until E . 10−6 [21]. Such values of E have not
been realized in experiments and DNS while simulta-
neously increasing RaE4/3 sufficiently to probe strong
geostrophic turbulence. As a result the parameter range
explored to date typically captures coherent dynamics
involving convective Taylor columns (CTCs) [9, 22] but
not geostrophic turbulence. Nevertheless, the recent ex-
periments by King et al. [15] undeniably show that the
transition away from a rotationally constrained scaling
law occurs entirely within the low Ro regime with the
transitional Rossby number Rot → 0 as E → 0. The
authors propose that the transition occurs when the di-
minishing width of the thermal boundary layer becomes
comparable with the Ekman layer, despite the fact that
a similar transition is observed for stress-free boundary
conditions and no Ekman layers [19].

In this Letter, we identify a compelling alternative to
the α ≈ 3, β ≈ 4 scaling and propose a mechanism for
the above transition by going deeper into the rapid rota-
tion regime. Our results support the suggestion that in
rotationally constrained turbulence heat transport is in-
dependent of microscopic diffusion coefficients just as in
nonrotating turbulence. Together with the requirement
β = 4α/3 this suggestion leads to α = 3/2, β = 2, i.e.,

Nu − 1 ≈ C1 σ
−1/2Ra3/2E2, (2)

where C1 is constant. Our simulations of geostrophic
turbulence (Fig. 1) using reduced equations valid in the

limit E → 0 confirm this scaling (Fig. 2) and indicate
that C1 ≈ 1/25. In contrast to the nonrotating case, the
turbulent scaling, Eq. (2), predicts less efficient transport
than the argument of King et al. [18]. This implies that
the vertical stiffness of a geostrophically balanced turbu-
lent interior acts as the primary throttling agent on the
heat transport, preventing the associated plume-emitting
thermal boundary layers and geostrophic vortices from
reaching their peak efficiency. Consequently, unlike hy-
potheses conjectured in [15, 18, 19], boundary conditions
play no role in determining the scaling exponent α. Be-
low we present evidence for Eq. (2) and give a new anal-
ysis of the global heat transport for E → 0. We also
demonstrate that the primary cause of the break in Nu

at Rat is the loss of geostrophic balance in a dynamically

active thermal boundary layer owing to increased verti-
cal mixing, and ultimately a complete loss of rotational
constraint. Furthermore, we predict that the transitional
{Ra,Ro} values scale as

Rat ≈ E−8/5, Rot ≈ E1/5 as E → 0. (3)

FIG. 1: Volume rendering of thermal fluctuations θ in the
geostrophic turbulence regime for RaE4/3 = 160 and σ = 0.3.

Theory: In statistically stationary turbulence Nu rep-
resents the sum of the diffusive and convective heat fluxes
and is independent of the vertical coordinate z. The scal-
ing with Ra may therefore be determined at any height
z, and it is convenient to focus on dynamics above and
below the equipartition level z = η at which the con-
vective heat flux, dominant in the bulk, is equal to the
diffusive heat flux, dominant in the thermal boundary
layer. For this purpose we write the velocity field as
u = u⊥ + w ẑ and the temperature as T = T (z) + θ,
where T (z) is the time-averaged temperature. We non-
dimensionalize all quantities using the depth H , velocity
κ/H , time H2/κ, and temperature ∆T . In the rapid ro-

tation limit we expect horizontal scales of order E1/3H
near onset (Ra ∼ Rac) and dynamically similar behavior
in the thermal boundary layers and bulk when Ra ≫ Rac

[23, 24]. For Ra ≫ Rac the appropriate scales for the
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thermal boundary layer are

x⊥ →
E1/3

Rλ
x
′

⊥, z →
1

R3λ
z′, t →

E2/3

R2λ
t′, (4)

u⊥ →
Rλ

E1/3
u
′

⊥, w →
Rλ

E1/3
w′, p →

p′

E
, (5)

θ → E1/3R3λ−1θ′, ∂zT → R4λ−1(∂zT )
′, (6)

where R ≡ RaE4/3 and 1/3 < λ ≤ 1 is an arbitrary
scaling exponent that determines the vertical scale η ∼
R−3λ of the layer and the temperature drop δT ∼ η∂zT
across it. After dropping primes the resulting boundary
layer equations take the form

1

σ

Du⊥

Dt
+

ẑ × u⊥ +∇⊥p

ε
=

(

∇
2
⊥ + ε2∂2

z

)

u⊥ (7)

1

σ

Dw

Dt
+ ∂zp = θ +

(

∇
2
⊥ + ε2∂2

z

)

w (8)

∇⊥ · u⊥ + ε∂zw = 0 (9)

Dθ

Dt
+ w∂zT =

(

∇
2
⊥
+ ε2∂2

z

)

θ (10)

R−4λ+1Nu = wθ − ∂zT , (11)

where ε ≡ E1/3R2λ and D/Dt ≡ ∂t + u⊥ · ∇⊥ + εw∂z.
Five conclusions follow from this rescaling when ε ≪ 1:
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FIG. 2: Nu − 1 as a function of R ≡ RaE4/3, compensated
with the geostrophic turbulence scaling prediction R3/2. The
curves for σ ≤ 1 exhibit the predicted scaling for geostrophic
turbulence, Nu−1 ∝ C1σ

−1/2R3/2 to within 6%. The σ = 3, 7
and 15 states, shown as small, medium and large gray circles,
respectively, have yet to reach the turbulent scaling regime.

(A) In order that Nu remains in Eq. (11) as R → ∞,
Nu must scale as Nu ∼ R4λ−1. Comparison with the
turbulent scaling, Eq. (2), leads to the prediction λ =
5/8.
(B) Eq. (7) implies that u⊥ = ẑ×∇⊥p+ εu1+O(ε2),

representing geostrophic balance at leading order, while

Eq. (9) implies that ∇⊥ · u1 + ∂zw = O(ε). Taking
the horizontal curl of Eq. (7), and eliminating u1 leads
to a closed set of equations describing the dynamics in
the thermal boundary layer when R ≫ 1. The result-
ing equations are the same as those describing the whole

domain when R = O(1), i.e., R . RatE
4/3 = E−4/15

[23, 24], and can be written in the form

1

σ
(∂t + u⊥ · ∇⊥)∇

2
⊥
p− ∂zw = ∇

4
⊥
p+O(ε) (12)

1

σ
(∂t + u⊥ · ∇⊥)w + ∂zp = Rθ +∇

2
⊥
w +O(ε) (13)

(∂t + u⊥ · ∇⊥) θ + w∂zT = ∇
2
⊥
θ +O(ε). (14)

Here u⊥ = ẑ ×∇⊥p, and Nu ≡ wθ − ∂zT solves a non-
linear eigenvalue problem specified by the boundary con-
ditions

T (z = 0) = 1, T (z = 1) = 0. (15)

In the following we refer to Eqs. (12)–(15) as the reduced
equations.
(C) Geostrophic balance in the thermal boundary layer

breaks down when ε ∼ 1, i.e., E1/3R2λ ∼ 1. This
condition is equivalent to the statement that the lo-

cal convective Rossby number in the boundary layer,

Roloc ∼ E locRa
1/2
loc ∼ E1/3R2λ ∼ 1. For λ = 5/8 this

occurs when Ra reaches Rat ≈ E−8/5 as E → 0, or
equivalently, when Ro = Rot ≈ E1/5 (Eq. (3)). Thus
the transition from rotation-dominated flow (ε ≪ 1) to
rotation-affected flow (ε & 1) in the thermal boundary
layers occurs in the regime of strong rotation as mea-
sured by the bulk convective Rossby number Ro. These
layers are characterized by relative temperature gradient
∂zT ≈ Nu/2 ∼ R4λ−1 and possesses local values for Ra

and E given by Ra loc = Ra Nu η4 ∼ E−4/3R−8λ = ε−4,
and E loc = E/η2 ∼ ER6λ = ε3. Thus for any set

of values of {λ,E , R}, Rloc = RalocE
4/3
loc ∼ 1. Given

that convection sets in for Rloc ∼ 1 the self-similar ther-
mal boundary layer is marginally stable as proposed by
Malkus.
(D) In the transition regime, the magnitudes of the

quantities in Eqs. (4)–(6) become fully isotropic with

|∇⊥| ∼ |∂z | ∼ |u⊥| ∼ |w| ∼ E−1/2 for any λ, while |θ| ∼

|δT | ∼ E (1−λ)/6λ, scalings characterizing moderate–to–
nonrotating RBC [25]. In this regime the O(ε) terms
in Eqs. (7)–(11) play significant dynamic roles, indicat-
ing complete loss of geostrophic balance, even though
the interior remains rotationally constrained with bulk
Ro,E ≪ 1.
(E) The transitional interval from (2) to rotationally

unaffected scalings (Ro & 1) is characterized by enhanced
heat transport [13] resulting from Ekman pumping as
described by Zhong et al. [26]. The width of this interval

is E 1/5 . Ro . 1 (E−8/5 . Ra . E−2).
Simulations: We integrate Eqs. (12)–(15) for fixed 10 ≤

R ≤ 160 and ε → 0 until a stationary state is reached
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(a) θ′ ≡ θE−1/3R−7/8 (b) (∇2

⊥p)
′ ≡ (∇2

⊥p)σE
−2/3R5/4
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(c) w′ ≡ wσE1/3R−5/8 (d) Nu ≡ Eθ
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FIG. 3: (a) RMS temperature fluctuation θ′RMS, (b) RMS ver-
tical vorticity (∇2

⊥p)
′

RMS, (c) RMS vertical velocity w′

RMS, all

as a function of R ≡ RaE4/3 evaluated at z = η for different
σ. Each nondimensional quantity is scaled according to the
geostrophic predictions Eqs. (4)–(6) with λ = 5/8. (d) Con-
tributions (in percentage form) to Nu ≡ Eθ measured by the
thermal dissipation rate in the interior, E int

θ , and the bound-
ary layer, Ebl

θ , as functions of R when σ = 1.

(Fig. 1, [9, 10]). Our most turbulent simulations were
well resolved with 768:768:385 spectral modes. When
σ > 0.68 and R increases beyond R = Rc ≈ 8.7, we
find four distinct regimes, all identifiable by transitions
in compensated Nu-Ra plots (Fig. 2) for different σ: (i)
a σ-independent laminar cellular state characterized by
Nu−1 ≈ 2(R−Rc)/Rc, (ii) a σ-independent state of iso-
lated layer-spanning convective Taylor columns (CTCs)
characterized by Nu − 1 ∼ R2 [10], (iii) an intermedi-
ate plume state resulting from a σ-dependent disruption
of the CTCs that reduces convection efficiency, and ulti-
mately, for σ ≤ 1, (iv) a state of geostrophic turbulence
(Fig. 1) at sufficiently large R. The Nu − 1 ∼ σ−1/2R3/2

scaling expected of regime (iv) is reflected in Fig. 2. Here
measurements were taken during the quasi-stationary
state seen after initial transients decay but before an
inverse cascade mechanism generates a slowly evolving
large-scale barotropic mode as described in [10]; this
interval shrinks as σ decreases. Figure 3(a)-(c) shows
the corresponding behavior of RMS temperature, ver-
tical vorticity and vertical velocity fluctuations at the
equipartition level. For σ ≤ 1 each shows a transition to
geostrophic turbulence as R increases.

Equations (12)–(15) yield a power integral for the ther-
mal dissipation rate Eθ ≡ 〈(∂zT )

2〉 + 〈|∇⊥θ|
2〉 = Nu,

where 〈. . .〉 indicates volume and time averages [10]. Par-
titioning Eθ into interior (bulk) and boundary layer con-
tributions, i.e., Eθ = E int

θ +Ebl
θ , proves useful in identifying

regions within the fluid layer that throttle the heat flux
[3]. Figure 3(d) shows the energy dissipation rates in the
boundary layer Ebl

θ and in the bulk E int
θ , and reveals that

dissipation in the bulk increases with increasing Ra, con-
firming that it is the bulk that limits the Nusselt number.
In Fig. 4(a) we show the compensated scaling for the

thermal boundary layer width η while Fig. 4(b) shows
the temperature drop δT across η. As in Fig. 3 both
show solid agreement with predictions based on λ = 5/8.
In particular, δT does not saturate as R increases (δT ∼
R−3/8), in contrast to the assumption made in [1, 18].

(a) η′ ≡ ηR15/8 (b) δT
′

≡ δTR3/8
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FIG. 4: Boundary layer quantities as functions of R ≡ RaE4/3

for different σ. (a) The width η′, (b) the temperature drop

δT
′

. Each nondimensional quantity is scaled according to the
geostrophic predictions, Eqs. (4)–(6), with λ = 5/8.
Our study of the reduced equations for R ≤ 160 pro-

vides convincing evidence for the presence of geostrophic
turbulence when σ ≤ 1. In contrast, for σ & 3 the sys-
tem remains in the CTC regime with α ≈ 2. Reduced
inertia in Eqs. (12)–(13) as σ increases delays the onset
of saturation in all quantities, and hence the transition
to geostrophic turbulence. Based on a presumption that
Nu ∝ (R/σ1/3)3/2 in the geostrophic turbulence regime,
we anticipate threshold values of Rturb ≈ 220, 290, 370
for σ = 3, 7, 15, respectively. The shift from α ≈ 2 to
α ≈ 3/2 (Fig. 2) indicates that it is the turbulent interior
that limits the heat flux, in stark contrast to nonrotating
RBC.
The results of this paper characterize the asymptotic

state of RBC in the limit ε → 0. With no-slip boundary
conditions this state may not be reached until ε . 10−2

(E . 10−6), even within linear theory [21]. Thus no-
slip DNS at E ≥ 10−6 find steeper exponents [18] while
stress-free DNS result in shallower exponents [19]. There
is a considerable need, therefore, for further detailed DNS
and laboratory experiments at σ ≤ 1, E ≤ 10−8, and
RaE4/3 ≥ 100, i.e., Ra ≥ 1012 (σ = 7, E ≤ 10−10, and

RaE4/3 ≥ 400, i.e., Ra ≥ 1014), despite the challenge
posed by these parameter values.
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