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Abstract

Although the cardinal attribute of turbulence is the velocity fluctuations, these fluctuations have

been ignored in theories of the frictional drag of turbulent flows. Our goal is to test a new theory

that links the frictional drag to the spectral exponent α, a property of the velocity fluctuations

in a flow. We use a soap–film channel wherein for the first time the value of α can be switched

between 3 and 5/3, the two theoretically possible values in soap–film flows. To induce turbulence

with α = 5/3, we make one of the edges of the soap–film channel serrated. Remarkably, the new

theory of the frictional drag holds in both soap-film flows (for either value of the spectral exponent

α) and ordinary pipe flows (where α = 5/3), even though these types of flow are governed by

different equations.
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Two aspects of turbulent flows have been the subject of extensive, seemingly unrelated

research efforts: the frictional drag and the velocity fluctuations. The frictional drag [1, 2]

is a dimensionless form of the shear stress that a flow exerts on the wall that contains

it. Dating back to the 1930s, the classical theory of the frictional drag [1, 2] remains a

mainstay of hydraulic engineering, used customarily to design canals, to determine the cost

of pumping oil through a pipeline, and to ascertain the draining capacity of a river in flood,

for example. The classical theory was predicated on dimensional analysis and similarity

assumptions [1, 2], without any reference to the velocity fluctuations, of which little would

be known until the 1940s, following Kolmogorov’s elucidation of the fabric of turbulence

[1, 3, 4]. Kolmogorov conceived turbulence as an ensemble of swirling velocity fluctuations

(or ‘eddies’) in a broad spectrum of sizes, a type of conceptual model that harks back to

the notebooks of da Vinci. The eddies carry turbulent kinetic energy, and Kolmogorov was

able to predict that the allotment of this energy among the eddies of different sizes (or

wavenumbers k) is described by the function E(k) ∝ k−α, where the spectral exponent α

should take the value 5/3. The function E(k), known as the energy spectrum of the velocity

fluctuations, turned out to be readily measurable [4], and by 1962 Kolmogorov’s prediction

had been verified experimentally [5]. Since then, more has been learned about the velocity

fluctuations (we now know, for example, that in many turbulent flows [6–8] the spectral

exponent can take values other than 5/3), and several variants of the classical theory of

the frictional drag have been proposed [9, 10]. But like the theory on which they have

been patterned, all variants of the classical theory ignore the velocity fluctuations, and the

spectral exponent plays no role in any of them. If there be a missing “spectral link” between

the frictional drag and the velocity fluctuations, the classical theory and its variants are

blind to it (and must be deemed incomplete).

In a resolute departure from the purview of the classical theory, the velocity fluctuations

have been explicitly taken into account in a recent theory of the frictional drag [11]. In

this new theory, for a turbulent flow on a smooth wall the functional relation between the

frictional drag f and the Reynolds number Re is mediated by the spectral exponent [12–14]:

f ∝ Re(1−α)/(1+α). (1)

This is the spectral link expressed in mathematical form. The spectral link may be readily

checked for pipe flows, where for ordinary fluids α = 5/3. In this case, (1) becomes f ∝
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Re−1/4, the Blasius empirical scaling [15], which is known to be in excellent accord with

the experimental data for ordinary pipe flows of moderate turbulent strength (starting from

Re ≈ 2, 500 and up to Re ≈ 100, 000) [10].

In contrast to ordinary pipe flows and other flows in which α = 5/3, two distinct values

of the spectral exponent are theoretically possible in soap-film flows [16–18]: 5/3 and 3. It

follows that a stringent test of the spectral link might be carried out in a soap-film channel.

In the standard soap-film channel [19], a soap film of thickness ≈ 10µm hangs between two

meter–long, vertical, mutually parallel wires spaced a few cm apart. Driven by gravity, the

film tends to drain at the outlet of the channel. But the film is constantly fed a soapy

solution at the inlet, and a steady flow soon becomes established within the film. It is easy

to induce turbulence by piercing the film with the teeth of a comb. The result is a soap-film

flow in which α = 3, and in a previous work [14] we were able to verify experimentally that in

such a flow f ∝ Re−1/2, in accord with (1) for α = 3. Other methods of inducing turbulence

in the standard soap-film channel [18, 20] have resulted in flows with mixed spectra (that

is, spectra in which E(k) ∝ k−5/3 on a narrow range of wavenumbers whereas for larger

wavenumbers E(k) ∝ k−3). Whether it is possible to realize a soap-film flow with a single

spectral exponent of value 5/3 remains an open question.

Consider, however, a newly designed soap-film channel in which two vertical, mutually

parallel, thin steel blades substitute for the wires of the standard soap-film channel. One of

the blades has a straight edge in contact with the film; the other blade has a serrated edge in

contact with the film. Thus the new channel is bounded by a straight edge on one side and

by a serrated edge on the other (Fig. 1a). The straight edge acts on the soap-film flow as a

smooth wall and will allow us to test the spectral link of (1), where f is the frictional drag

measured on a smooth wall. As for the serrated edge, recent computational simulations [13]

indicate that the serrations could induce turbulence with α = 5/3.

To assess the new soap-film channel, we compute [22] the energy spectrum E(k) at several

locations on the film from measurements carried out with a Laser Doppler Velocimeter

(LDV). These measurements [22] consist of time-series of the instantaneous velocity on the

plane of the film. In Fig. 2a we show a set of energy spectra computed on a transect of

the channel, from close to the straight edge (which corresponds to y/w = 0) to close to the

tips of the serrations (which correspond to y/w = 1). From Fig. 2a, it is apparent that the

serrations induce turbulence with α = 5/3—but not over the entire width of the channel.

3



P

RT

RB

X

W

V

a b

e

d

c

w

u

y

FIG. 1. (Color Online) The new soap-film channel. (a) The film (shown in gray shading) hangs between

two steel blades (shown in black shading) that are suspended using fishing lines (shown as thin solid lines)

kept taut by weight W. The spacing between the blades sets the width of the channel, w, which we vary

between 1 cm and 3 cm. The blades are 0.5 mm thick (in the direction normal to the plane of the figure),

1.2 m long, and ≈ 1 cm wide. One of the blades has a serrated edge (size of the serrations ≈ 2 mm; spacing

between serrations ≈ 4 mm). Reservoir RT contains a Newtonian soapy solution (2.5% of the commercial

detergent “Dawn Nonultra” in water; kinematic viscosity ν = 0.01 cm2s−1, the same as for pure water) [21]

which flows through valve V (which we use to control the flow rate) and into the film. The soapy solution

is collected into reservoir RB and returned to reservoir RT through pump P. We carry our measurements of

the frictional drag only on the straight edge of the channel, at distances of at least 30 cm and up to 85 cm

from the inlet. (b) The film may be pierced with a cylindrical rod (diameter ≈ 6 mm), resulting in a flow

in which α = 5/3 (see text); the turbulence can be made visible at a particular instant by (c) interference

fringes in white light. (Note that the image does not cover the entire width of the channel.) (d) The film

may be pierced with the teeth of a comb (tooth diameter ≈ 1 mm; tooth spacing ≈ 3 mm), resulting in a

flow in which α = 3; the turbulence can be made visible at a particular instant by (e) interference fringes

in white light. (Note that the image does not cover the entire width of the channel.)

4



In fact, the value of α remains close to 3 over at least one-half of the width of the channel.

Nevertheless, as we shall presently demonstrate, a flow in which α = 5/3 over the entire

width of the channel can be brought about by piercing the film with a cylindrical rod at the

inlet, as sketched in Fig. 1b. To understand the effect of the rod, in Fig. 2b we show a set of

energy spectra computed on the centerline of the channel (which corresponds to y/w = 0.5)

and downstream from the rod. As the distance from the rod increases, the spectral exponent

lessens monotonically and reaches the value 5/3 about 15 cm downstream from the rod. The

rod sheds vortices which grow in diameter as they are advected downstream. These vortices

pick up the turbulence induced by the serrations and spread it across the width of the

channel (Fig. 1c). We find that in all of our experiments α = 5/3 over the entire width of

the channel on any transect that is at least 30 cm downstream from the rod (Fig. 2c).

Alternatively, the film may be pierced with the teeth of a comb, as sketched in Fig. 1d.

The teeth of the comb induce turbulence with α = 3 (as they do in the standard channel).

The turbulence induced by the serrations is swept aside (Fig. 1e), resulting in a flow in which

α = 3 over the entire width of the channel (Fig. 2d).

From LDV measurements we also compute [22] the mean (time-averaged) streamwise

velocity u at any point on the film. Successive computations of u along a transect of the

channel give the mean velocity profile u(y) of that transect. The mean velocity of the flow

follows from the definition, U ≡ (1/w)
∫ w
0
u(y)dy. To compute the viscous shear stress

profile, τV (y), we use the formula, τV (y) = ρνdu(y)/dy, where ρ and ν are the density

and the kinematic viscosity of the soapy solution, respectively. We also compute [22] the

Reynolds shear stress profile, τRe(y). In Fig. 3 we show typical plots of u(y), τV (y), and

τRe(y).

It is apparent from Fig. 3 that near the straight edge of the channel there is a viscous

layer (of width ≈ 1 mm) in which the Reynolds shear stress is negligible as compared to the

viscous shear stress. From the slope G of a mean velocity profile in the viscous layer (for

example, inset of Fig. 3), we compute the shear stress between the flow and the straight

edge as τ = ρνG. The frictional drag follows from the definition, f ≡ τ/ρU2, as f = νG/U2.

The attendant Reynolds number Re = wU/ν.

In Fig. 4 we show a log-log plot of the experimental data points (f , Re). Besides the

data points from the new soap-film channel we include data points from the standard soap-

film channel [14]. In accord with (1), the data points for α = 5/3 (new channel only)
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FIG. 2. (Color Online) Typical log-log plots of energy spectra computed from LDV measurements [22]

carried out in the new soap-film channel. The slope of these log-log plots equals the value of the spectral

exponent α; unless otherwise noted, the plots correspond to the streamwise component of the energy spec-

trum, Euu(kx). (a) Spectra on a transect of the channel (layout of Fig. 1a). (b) Spectra on the centerline

of the channel with a rod at the inlet (layout of Fig. 1b). The distances indicated are measured downstream

from the rod. (c) Spectra on a transect of the channel with a rod at the inlet (layout of Fig. 1b). The

transect is 30 cm downstream from the rod. The streamwise component Euu(kx) is shown in thick lines, the

transverse component Evv(kx) is shown in thin lines; except for small k, both components collapse onto the

same curve, signifying isotropy. (d) Spectra on a transect of the channel with a comb at the inlet (layout of

Fig. 1d). The transect is 30 cm downstream from the inlet. The streamwise component Euu(kx) is shown in

thick lines, the transverse component Evv(kx) is shown in thin lines; except for small k, both components

collapse onto the same curve, signifying isotropy.
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FIG. 3. The mean velocity profile u(y), the Reynolds shear stress profile τRe(y), and the viscous shear

stress profile τv(y) of a typical soap-film flow with α = 5/3. (Spectra of this flow are shown in Fig. 2c.)

Points on the film closer than ≈ 20µm (the diameter of the beam of the LDV) from the straight edge of

the channel cannot be probed with the LDV; thus the first data point, which we position at y = 0, is at

a distance of ≈ 20µm from the straight edge of the channel. Inset: Zoom-in view of u(y) in the viscous

layer, where du/dy = G. The apparent slip velocity u(0) can be ascribed to the complex flow immediately

adjacent to the straight edge of the channel. In previous work [14] we have shown that the frictional drag

does not depend on u(0) (except perhaps through the Reynolds number).

are consistent with the scaling f ∝ Re−1/4. Also in accord with (1), the data points for

α = 3 (new channel and standard channel) are consistent with the scaling f ∝ Re−1/2. The

frictional drag is inextricably linked to the energy spectrum of the velocity fluctuations.

To summarize: We have developed a new soap-film channel. In contrast to the standard

soap-film channel, in which it is only possible to realize flows with a single spectral exponent

of value 3, in the new soap-film channel it is also possible to realize flows with a single spectral

exponent of value 5/3. We have used the new soap-film channel to confirm the theoretical

prediction that there exists a link between the frictional drag and the spectral exponent

(that is the exponent of the energy spectrum of the velocity fluctuations). Some of the

implications of this hitherto missing “spectral link” may be best appreciated by contrasting

soap-film flows with pipe flows:

Ordinary pipe flows are governed by the Navier-Stokes equations [1], whereas soap-film
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FIG. 4. (Color Online) Log-log plot of the experimental data points (frictional drag f , Reynolds number

Re), from independent experiments carried out in Bordeaux and Pittsburgh. The data points for α = 5/3

are shown using blue symbols, and the data points for α = 3 are shown using red symbols.

flows are acted upon by surface forces that are not considered in the Navier-Stokes equa-

tions, including elastic forces and the forces whereby the film interacts with the surrounding

air [21, 23]. Unlike pipe flows, soap-film flows are essentially two-dimensional (2D), and

turbulence in two dimensions differs crucially from turbulence in three dimensions in that

in two dimensions there can be no vortex stretching [1]. Further, even where a 2D flow has

the same spectral exponent, 5/3, as an ordinary pipe flow, the velocity fluctuations transfer

turbulent kinetic energy from smaller to larger lengthscales in the 2D flow, in the opposite

direction in the pipe flow [16].

And yet, for all the profound disparities between soap-film flows and pipe flows, we have

found that in both types of flow the relation between the frictional drag and the Reynolds

number is set by the spectral exponent. Even where two flows have hardly anything in

common, including the governing equations, beside the value of the spectral exponent, the

relation between the frictional drag and the Reynolds number turns out to be the same

in both flows, consistent with the existence of an inextricable, specific link between the
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frictional drag and the velocity fluctuations in a flow.
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