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Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser

Justin G. Bohnet,∗ Zilong Chen, Joshua M. Weiner, Kevin C. Cox, and James K. Thompson
JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA

We experimentally study the relaxation oscillations and amplitude stability properties of an optical
laser operating deep into the bad-cavity regime using a laser-cooled 87Rb Raman laser. By combining
measurements of the laser light field with non-demolition measurements of the atomic populations,
we infer the response of the the gain medium represented by a collective atomic Bloch vector. The
results are qualitatively explained with a simple model. Measurements and theory are extended to
include the effect of intermediate repumping states on the closed-loop stability of the oscillator and
the role of cavity-feedback on stabilizing or enhancing relaxation oscillations. This experimental
study of the stability of an optical laser operating deep into the bad-cavity regime will guide future
development of superradiant lasers with ultranarrow linewidths.

PACS numbers: 42.50.Nn, 42.60.Rn, 42.55.Ye, 42.50.Pq

Optical lasers operating deep in the bad-cavity or su-
perradiant regime, in which the cavity linewidth κ is
much larger than the gain bandwidth γ⊥, have attracted
recent theoretical[1, 2] and experimental[3–5] interest.
The interest has been partially driven by the possibil-
ity of creating spectrally narrow lasers with linewidths
≤ 1 millihertz and dramatically reduced sensitivity to
the vibrations that limit state of the art narrow lasers
and keep them from operating outside the laboratory
environment[6]. These lasers may improve measurements
of time[7], gravity[8], and fundamental constants[9, 10]
aiding the search for physics beyond the standard model.
The cold-atom Raman superradiant laser utilized here
operates deep into the bad-cavity regime (κ/γ⊥ ≈ 103 �
1), making it an important physics test-bed for funda-
mental and practical explorations of bad-cavity optical
lasers.

In the interest of fundamental science and in light of
the potential applications, it is important to understand
the impact of external perturbations on lasers operat-
ing deep into the bad cavity regime. In this Letter, we
present an experimental study of the response to exter-
nal perturbations of the amplitude, atomic inversion, and
atomic polarization of an optical laser operating deep
into the bad-cavity regime. In contrast, experiments
have extensively studied the amplitude stability prop-
erties of good-cavity lasers (κ � γ⊥) (See Ref. [11]
and references therein). Previous experimental work in
the extreme bad cavity[3] and crossover regime[12] fo-
cused on the phase properties of the light and atomic
medium. Amplitude oscillations, intensity noise, and
chaotic instabilities have been observed in gas lasers
operating near the cross-over regime (κ/γ⊥ ≤ 10)[13–
16]. Relaxation oscillations of the field have been stud-
ied deep into the bad cavity regime using masers[17]
in which the radiation wavelength is comparable to the
size of the gain medium, unlike in the present opti-
cal system. Previous theoretical studies of amplitude
stability deep in the bad-cavity regime include stud-
ies of relaxation oscillations[18], chaotic instabilities[19],

and intensity fluctuations characterized by correlation
functions[18, 20].

In good-cavity optical lasers, the atomic polarization
(proportional to J⊥) can be adiabatically eliminated and
the relaxation oscillations are associated with the flow of
energy back and forth between the gain inversion (pro-
portional to Jz) and the cavity field A, where Jz, J⊥
are components of the collective Bloch vector ~J describ-
ing the atomic gain medium. In contrast, in a bad-
cavity laser, the cavity field can be adiabatically elim-
inated, and the oscillations are driven by the coupling
of J⊥ and Jz. Here, we will measure and infer not only
the light field A(t), but also the atomic degrees of free-
dom J⊥(t) and Jz(t) using non-demolition cavity-aided
measurements[21] to give the complete picture of the dy-
namics of relaxation oscillations in a bad-cavity laser.

We will also consider the effects on the laser’s ampli-
tude stability of non-ideal repumping through multiple
intermediate states. Intermediate repumping states were
not included in previous simple theoretical models[1], but
are present in most actual realizations. In addition, we
demonstrate that the cavity frequency tuning in response
to the distribution of atomic population among various
ground states can be used to suppress or enhance re-
laxation oscillations in the Raman transition configura-
tion or other configurations with atomic transitions near-
detuned from the lasing mode. As evidence, we show
stabilization of Jz, J⊥, and A similar to observations of
the suppression of relaxation oscillations in good-cavity
lasers[22]. The cavity frequency tuning mechanism is re-
lated to other applications of cavity feedback including
the creation of nonlinearities for generating spin-squeezed
atomic ensembles [23], cavity cooling and amplification in
atomic and opto-mechanical systems [24], and the control
of instabilities in gravitational wave detectors [25].

Our experimental system consists of a quasi-steady-
state Raman laser described in Fig. 1 and in Ref. [3].
The laser uses N = 1× 106 to 2× 106 87Rb atoms as the
gain medium. The atoms are trapped and laser cooled
into the Doppler-insensitive Lamb-Dicke regime (40 µK)
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FIG. 1. (color online) (a), (b) Physical setup and energy level
diagram. The trapping light (orange) and Raman dressing
laser (red, power ∝ Ω2

d) are injected along the cavity axis.
The repumping light (purple, green) is applied perpendicular
to the cavity axis. The emitted optical laser light (blue) is
nearly resonant with the cavity mode (dashed lines) detuned
from ωcav by δ. The repumping is accomplished through
a pair of two-photon transitions through intermediate opti-
cally excited states |II〉 and |III〉 with incoherent decay rates
Γ. We individually control the two-photon rates W and Γ3

with the repumping laser powers ∝ Ω2
1,2. |3〉 represents other

metastable ground states besides the laser levels. (c) Example
emitted laser photon flux |A(t)|2 versus time showing spiking
and relaxation oscillations at turn-on.

in a 1-D optical lattice at 823 nm formed by a standing
wave in a moderate finesse F ≈ 700 optical cavity with
a cavity power decay rate κ/2π = 11 MHz. The single-
atom cavity cooperativity parameter is C = 8× 10−3 �
1, and is equivalent to the Purcell factor[26].

Fig. 1b shows a simplified energy level diagram of
a three level Raman laser system. The lasing tran-
sition is a spontaneous optical Raman transition with
single-particle rate γ from |↑〉 ≡

∣∣5 2S1/2 F = 2,mF = 0
〉

to |↓〉 ≡
∣∣5 2S1/2 F = 1,mF = 0

〉
. The decay is in-

duced by a 795 nm dressing laser injected into the cav-
ity non-resonantly, and detuned from the |↑〉 to |I〉 ≡∣∣5 2P1/2 F

′ = 2
〉

transition by ∆/2π = +1.1 GHz. The
atoms are incoherently repumped back to |↑〉 in two steps:
from |↓〉 to |3〉 and then from |3〉 to |↑〉, at single-particle
rates W and Γ3 respectively. The third metastable
ground state |3〉 here represents the sum of all other hy-
perfine ground states in 87Rb. The full energy level di-
agram with details of the dressing and repumping lasers
is provided in Ref. [27].

We control γ (typical value 60 s−1) using the intensity
of the dressing laser. We control the repumping rates W
and Γ3 using two 780 nm repumping lasers tuned near
resonance with the

∣∣5 2S1/2 F = 1, 2
〉
→
∣∣5 2P3/2 F

′ = 2
〉

transitions. The repumping intensities are independently
controlled allowing us to set the proportionality factor

r ≡ Γ3 /W . In our experiments, W ranges from 103 s−1

to 105 s−1, and r ranges from 0.01 to 2. The repumping
dominates all other homogenous broadening of the |↑〉
to |↓〉 transition such that γ⊥ ≈ W/2. The inhomoge-
nous broadening of the transition is γin ≈ 103 s−1. To
summarize, the relevant rates to characterize our system
satisfy the hierarchy κ� γ⊥ ≈ W/2 ∼ NCγ > γin � γ.
The rate NCγ sets the scale for the single-particle,
collectively-enhanced decay rate from |↑〉 to |↓〉. Cou-
pling to other transverse and longitudinal cavity modes
is negligible.

The frequency of the superradiantly emitted light ωγ is
set by the frequency of the dressing laser and the hyper-
fine splitting ωHF/2π = 6.834 GHz. The detuning of light
and cavity resonance frequency is δ = 2(ωcav − ωγ)/κ,
normalized to the cavity half linewidth. The single par-
ticle scattering rate from the dressing laser into the cavity
mode is Γc(δ) = Cγ/

(
1 + δ2

)
.

The cavity frequency is dispersively tuned by the
atomic ensemble ωcav = ωbcav+

∑
k αkNk, where ωbcav is

the bare cavity frequency and αk is the cavity frequency
shift for a single atom in the kth ground Zeeman state
resulting from dispersive phase shifts of the intracavity
light field.

Since the cavity frequency shift from atoms in the F =
1, 2 hyperfine states are not equal, the cavity frequency
can provide a measurement of the atomic populations.
We can suddenly switch off the repumping and dressing
lasers to effectively freeze the atomic populations[4]. We
then combine repeated non-demolition cavity frequency
measurements[21, 28, 29] and NMR-like rotations[30] to

determine Jz(t) = 〈 12
∑N
i (|↑i〉 〈↑i| − |↓i〉 〈↓i|)〉 and δ(t)

[27]. We measure the amplitude of the light field emitted
from the cavity A(t) in heterodyne just prior to freezing
the system, along with the measurement of the cavity
frequency detuning δ provides an inferred value of J⊥ =∣∣∣〈Ĵ−〉∣∣∣ using the relation A(t) =

√
Γc(δ(t))J⊥(t), where

Ĵ− =
∑N
i |↓i〉 〈↑i|.

We observe characteristic laser spiking and relaxation
oscillation behavior in |A(t)|2 as the laser turns on and
settles to steady state (Fig. 1c). To systematically
study small amplitude deviations about the steady-state
values J̄z, Ā, and J̄⊥, we apply a swept sine tech-
nique, similar to Ref. [31]. We apply a simultaneous
small amplitude modulation of the repumping rates as
W (t) = W̄ (1 + ε Re[eiωt])) and Γ3 (t) = rW (t). The
modulation frequency ω is scanned over frequencies of
order W̄ , such that γ < ω � κ. We then measure and
infer the quantities A(t), J⊥(t), and Jz(t) as described
earlier.

To calculate the transfer function of the applied mod-
ulation, the measured light field amplitude A(t) exit-
ing the cavity as a function of time is fit to A(t) =
Ā(1 + a(ω) cos(ωt + φa(ω))). The normalized fractional
amplitude response transfer function is TA(ω) ≡ a(ω)/ε
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FIG. 2. (color online) (a) Parametric plots of the Bloch vector
components Jz(t) and J⊥(t) over a single cycle of modulation
of the repumping rate W near Wpk for modulation frequen-
cies below, near, and above resonance or ω/2π = 0.11, 2.2, 8
kHz, from left to right. The black points are the mea-
sured small-signal deviations about the measured steady-state
Bloch vector (red arrow). The blue curve is the predicted
deviation from steady-state given the experimental parame-
ters N = 1.3 × 106, r = 0.71, δs = 1, W = 0.4NCγ, and
NCγ = 125 × 103s−1. The modulation depth ε for data be-
low and above resonance was doubled to make the response
more visible. (b) The amplitude (upper) and phase (lower)
response transfer functions TA(ω), Tφ(ω) of the light field for
three values of the repumping rate W . The points are mea-
sured data, and the lines are zero free-parameter predictions
of the response. (inset) ωres versus W (points) and a fit to
ω0 (line) showing the expected frequency dependence of the
relaxation oscillations on repumping rate.

and the phase response transfer function is Tφ ≡ φa(ω).
We also define the modulation frequency that maximizes
TA(ω) as the resonance frequency ωres.

We present the measured transfer functions and atomic
responses in Figs. 2, 3, and 4, with theoretical predic-
tions from a full model for 87Rb for quantitative compari-
son. To guide the interpretation of the measurements, we
present an analogous 3-level model for the system shown
in Fig. 1b that captures the qualitative features of the
full model[27]. The 3-level model uses semi-classical opti-
cal Bloch equations to describe the lasing transition and
the repumping process. Since κ � W,γ, the cavity field
can be adiabatically eliminated from the system of equa-
tions. Additionally, we have adiabatically eliminated the

populations in the optically excited states |I〉 , |II〉 , |III〉,
arriving at the steady state solutions for the inversion
J̄z and collective atomic coherence J̄⊥[1, 32]. The steady
state amplitude Ā is maximized at W = Wpk = 1

2NΓc(δ̄)
where δ̄ is the steady state cavity detuning.

To predict relaxation oscillations and damping, we do a
straightforward expansion about the steady state values
J̄z, J̄⊥, and N̄3 as Jz(t) ≈ J̄z(1 + Re[jz(t)]), J⊥(t) ≈
J̄⊥(1+Re[j⊥(t)]), and N3 ≈ N̄3(1+Re[n3(t)]) and ignore
terms that are second order in small complex quantities
j⊥, jz, n3 and repumping modulation amplitude ε [18, 27,
33]. The coupled quadratures jz and j⊥ respond like the
two coupled quadratures of a harmonic oscillator, slightly
modified by the presence of the intermediate repumping
state |3〉. In the limit of ideal repumping (r → ∞) as is
considered in Ref. [1], we can recast the equations as two
uncoupled, second order differential equations

̈z,⊥ + 2γ0̇z,⊥ + ω2
0z,⊥ = Dz,⊥(ω)εeiωt. (1)

When δ = 0, the damping rate γ0 = W̄/2 is
set by the damping of the transverse component j⊥
caused by single-particle wave function collapse associ-
ated with the repumping. The natural frequency ω0 =√
W̄ (NCγ − W̄ ) =

√
2J̄⊥Cγ is set by the steady-state

rate of converting collective transverse coherence into in-
version J̄2

⊥Cγ, normalized by the total steady state co-
herence J̄⊥.

The responses of the two quadratures to the modu-
lation are different because the effective drives are dif-
ferent with D⊥(ω) = W̄

2 (NCγ − 2W̄ − iω) and Dz(ω) =
(NCγ−W̄ )(W̄+iω). Note that the magnitude and phase
of the drives change with the modulation frequency and
repumping rate, even as the modulation depth ε remains
constant.

We show this driven oscillator response in Fig. 2a
with the measured and predicted parametric plot of Jz
and J⊥ at three different applied modulation frequencies,
with repumping near W̄ = Wpk. Although the char-
acteristic frequencies and rates of the atomic oscillator
do not change, the differing drives lead to a change in
the phase relationship between the response of the two
quadratures. We believe the discrepancy with theory in
the center panel of Fig. 2a is the beginning of nonlinearity
in the system as it responds beyond the small perturba-
tion regime near resonance.

In Fig. 2b, we focus on the light field’s transfer func-
tions TA(ω) and Tφ(ω). Data for three different average
repumping rates W̄ are shown. The data displays the
features of the simple 3-level model, namely increased
damping with W̄ , ω0 scaling with W̄ (inset), the 270◦

phase shift of Tφ at high modulation frequencies, the
small response near ω = 0 and W̄ = Wpk caused by
the cancellation in the drive term D⊥(ω), and finally the
phase reversal of the response near ω = 0 going from be-
low to above Wpk. The data also quantitatively agrees
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FIG. 3. (color online) Effects of finite ratio of repumping rate
r (a) Comparison at two values of r of TA(ω)versus modula-
tion frequency. The points are measured data in good agree-
ment with the zero-free parameter fit (lines). (b) Plot of the
resonance frequency ωres (black) and the peak value TA(ωres)
(red) versus r.

with the displayed theory calculated for the full model
including all 87Rb levels. We suspect the deviation for
W̄ = 0.73NΓc is a result of a systematic error in mea-
suring the total atom number.

In this work, the repumping ratio r 6= ∞, and the
theory must be extended to quantitatively describe the
data. The physical effect of finite r is that popula-
tion builds up in |3〉. The ratio of steady state popu-
lations is simply N̄3/N̄↓ = 1/r. As a result of a non-
negligible N̄3, the natural frequency is slightly modified

as ω0 =
√

r
1+rW̄ (NCγ − W̄ ). The effective damping

in the presence of a harmonic drive at frequency ω is

γ0 = W̄
2

r2

(1+r)(1/2+r) + r(NCγ−W̄ )
2(1+r)(1/2+r) −

ω2

W̄ (1+r)
. The fre-

quency dependent term results from the additional phase
shift introduced into the oscillating system as a result of
time spent in |3〉. Despite the frequency-dependent re-
duction of the damping, as long as γ0 > 0 near ω = ω0,
the system will remain stable. We can experimentally
observe a reduction in damping as r → 0, shown in Fig.
3. From the form of ω0 and γ0, we expect to see the reso-
nance frequency sharply decrease, and an increase in the
peak relaxation oscillation amplitude, as r → 0, which
we observe in Fig. 3b.

To understand the dynamic tuning of the cavity reso-
nance frequency ωcav in response to changes in the atomic
populations, we consider the case r → ∞ and δ 6= 0.
We also assume the cavity frequency is tuned by the
atomic inversion Jz as α = α↓ = −α↑ > 0. The dy-
namic cavity tuning then modifies the damping rate as

γ0 = W̄
2

(
1 + 2αδ̄

(
N

1+δ̄2
− W̄

Cγ

))
. The dispersive tuning

of the cavity frequency can act as either positive or nega-

(a)

(b)

FIG. 4. (color online) Evidence of negative and positive cavity
feedback. (a) Amplitude transfer functions of the emitted
electric field for three detunings from cavity resonance. The
data points are the average of 4 experimental trials. The lines
are fitted transfer functions with N as a free parameter. (b)
Cavity damping of collective atomic degrees of freedom. The
response going from δ̄ = 0.2 (left) where the γ0 is small to
δ̄ = 0.9 (right) where the system is expected to be critically
damped. The red lines are sinusoidal fits to the data (circles).
The dashed lines highlight the damping in both J⊥ and Jz.

tive feedback on the oscillations of j⊥,z for δ̄ < 0 and > 0
respectively. As an example, in the case of negative feed-
back, if the inversion Jz decreases, the cavity tunes away
from resonance with the Raman transition, reducing the
superradiant emission from |↑〉 to |↓〉, and allowing the
repumping to restore the inversion more quickly. We ob-
serve both positive and negative feedback in the mea-
sured transfer function TA(ω) and the atomic responses
Jz(t) and J⊥(t) as shown in Fig. 4.

We have studied the dynamics of the polarization, in-
version, and field of an optical laser operating deep in
the bad-cavity regime. We have shown that dispersive
cavity frequency tuning can suppress or enhance relax-
ation oscillations. Having experimentally validated our
model for optical lasers in the extreme bad-cavity regime,
future work can now extend the formalism to realistic
models of proposed ultrastable lasers using ultranarrow
atomic transitions in atoms such as Sr and Yb[1]. In the
future, it should be possible to directly monitor J⊥ us-
ing techniques similar to those presented here to monitor
Jz. Further studies of the nonlinear dynamics of the ex-
treme bad-cavity laser system will include investigations
of chaos[19] and squeezed light generation[34].
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