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In the past few years, coupling strengths between light and mechanical motion in optomechanical
setups have improved by orders of magnitude. Here we show that, in the standard setup under
continuous laser illumination, the steady state of the mechanical oscillator can develop a non-
classical, strongly negative Wigner density if the optomechanical coupling is comparable to or larger
than the optical decay rate and the mechanical frequency. Because of its robustness, such a Wigner
density can be mapped using optical homodyne tomography. This feature is observed near the onset
of the instability towards self-induced oscillations. We show that there are also distinct signatures
in the photon-photon correlation function g(2)(t) in that regime, including oscillations decaying on
a time scale not only much longer than the optical cavity decay time, but even longer than the
mechanical decay time.

By coupling optical and mechanical degrees of free-
dom, the emerging field of optomechanics provides excit-
ing new opportunities to study the quantum mechanical
behavior of macroscopic objects (for reviews see [1, 2]).
Recent optomechanical cooling experiments are success-
fully bringing nanomechanical oscillators into their quan-
tum mechanical ground state [3, 4]. The same optome-
chanical coupling also promises the possibility of single-
quadrature measurements of the resulting mechanical
quantum states with the help of the light field [5–7]. For
a reproducible and persistent quantum state, such mea-
surements would result in an experimental determination
of its full Wigner density via tomography, similar to what
has been achieved in microscopic systems, for single ions
or photons [8, 9]. The recent advances in fabricating op-
tomechanical devices have drastically improved coupling
parameters, e.g. for optomechanical crystals [10], in mi-
crowave setups [3], and other devices like GaAs disks [11]
or toroidal optical microcavity [12]. It will likely be pos-
sible relatively soon to achieve optomechanical coupling
strengths g0 at the single-photon level that are com-
parable to the optical cavity decay rate κ, a feat that
has already been achieved in cold atom optomechani-
cal systems[13, 14]. This regime of strongly nonlinear
quantum optomechanics promises to pave the way to-
wards generating and detecting novel quantum states in
optomechanical systems. It is currently only beginning
to be explored theoretically [15–17], although very early
work already discussed quantum optomechanical effects
in the (unrealistic) absence of any dissipation [18, 19].

In the classical regime, nonlinear dynamics is known to

occur when the system is driven by a blue detuned laser.
When the input laser power crosses a certain threshold,
the mechanical oscillator will undergo a Hopf bifurca-
tion and start self-induced mechanical oscillations, a phe-
nomenon termed “parametric instability” [20–25]. The
quantum dynamics of this regime has first been studied
in [15], and there is interesting synchronization behaviour
for arrays of coupled oscillators of this type [26].

In this paper, we show that, for strong optomechani-
cal couplings g0 comparable to or greater than the opti-
cal decay rate κ and mechanical frequency ωM (g0/κ &
1, g2

0/(κ·ωM ) & 1), a large laser driving and an effectively
zero temperature thermal bath, a non-classical state of
the mechanical oscillator with strongly negative Wigner
density can be produced around the onset of self-induced
oscillations. Because the state is time-independent, one
may use single-quadrature homodyne tomography to ex-
perimentally reconstruct its non-classical Wigner density.

In addition, we propose to use the two-point photon
correlation function g(2)(t) as an experimentally conve-
nient probe for the peculiar quantum dynamics near the
bifurcation. We identify two distinct signatures that en-
able experimentalists to reliably detect the onset and
growth of the self-induced oscillation. We provide an
explanation of the non-classical decay of g(2)(t) in both
the red and blue-detuned regime.

Within the rotating wave approximation, an optome-
chanical system can be described by the following stan-
dard Hamiltonian:

Ĥ = ~(−∆+g0(b̂†+b̂))â†â+~ωM b̂†b̂+~αL(â†+â)+Ĥdiss.
(1)
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FIG. 1: Non-classical states in an optomechanical system. The laser input αL is held constant and the laser detuning ∆
increases from the steady state “A” to “D”. The mechanical Wigner densities of these states are shown in (a)-(d). xZPF /pZPF
are zero-point fluctuations of the oscillator’s position/momentum. Plot (e) shows the start of the self-induced oscillation, where
the phonon number nb of the oscillator rises quickly between state “B” and “C”. As the detuning further increases to “D”, a non-
classical mechanical quantum state with negative mechanical Wigner density state appears, as shown in (d). In (f) the evolution
of the mechanical Fano factor F as a function of ∆ is shown. It dips below the Poisson value 1 (the thick line) in non-classical
state shown here. In plot (g) and (h), we show that the negative Wigner density states have more sharply peaked phonon
number distributions p(n) compared with non-negative states. In (g) the p(n) of state “C” and “D” (plot (c),(d)) are compared.
In (h), where g0 = 0.6ωM , the negative state (blue line) has two clear peaks in p(n), in contrast to a single smooth peak for the
non-negative state (red line). The Wigner density of these two states are shown as insets. Finally, in (i) we show two regions in
the parameter space of detuning ∆ and coupling g0 where significant negative Wigner density states exist. States “A”-“D” are
indicated here. In all plots other physical parameters are g0 = 0.36ωM , κM = 0.3ωM ,ΓM = 0.00147ωM , αL = 0.311ωM , except
for (h), where g0 = 0.6ωM , αL = 0.186ωM . The intra-cavity photon number is na ≈ 0.1—0.7 when g0 = 0.36ωM ,−ωM ≤ ∆ ≤ 0.

Here â/b̂ are the operators for the photon/phonon modes,
ωM is the mechanical frequency and αL is the laser driv-
ing amplitude. ∆ = ωL − ωC is the detuning of the
laser from the cavity’s unperturbed resonance (i.e. evalu-
ated for zero mechanical displacement). g0 describes the
strength of the optomechanical coupling at the single-
photon level.

When the dissipative terms in Hdiss are taken into
account, the density matrix ρ̂ of the combined photon-
phonon system evolves according to the quantum master
equation:

dρ̂

dt
= L[ρ̂] =

[Ĥ, ρ̂]

i~
+ ΓD[b̂, ρ̂] + κD[â, ρ̂]. (2)

Here L is the quantum Liouville operator describing the
time evolution of the density matrix ρ̂, where we incorpo-
rate dissipation in the photon/phonon subsystems with
decay rates κ and Γ, respectively. The standard Lindblad
term is given by D[Ô, ρ̂] = Ôρ̂Ô† − 1

2 (Ô†Ôρ̂ + ρ̂Ô†Ô).
Note that we will assume zero bath temperature in our
simulations, which will be reachable to a good approxi-
mation when GHz-frequency setups (e.g. optomechani-
cal crystals) are deployed in dilution refrigerator settings.
In this paper, we are interested in the steady state solu-
tion of Eq. 2, where all the transient dynamics has died

out. This is obtained numerically by finding the density
matrix satisfying L[ρ̂] = 0 using the standard Arnoldi al-
gorithm, as implemented in the ARPACK package. Due
to its persistence, this state is ideal for making homo-
dyne measurements of its mechanical Wigner density, in
contrast to transient scenarios.

Specifically we are interested in the mechanical Wigner
density WM(x, p) = 1

π~
∫∞
−∞〈x − y|ρ̂M|x + y〉e2ipy/~dy,

where ρ̂M is the mechanical density matrix, obtained by
tracing out the optical degrees of freedom from ρ̂. The
Wigner density is the quantum analog of the classical
Liouville phase space probability density. A negative
Wigner density is a strong signature of a non-classical
state. Early investigations [15] of the optomechanical in-
stability in the regime around g0 ∼ κ did not turned up
nonclassical states.

In Fig 1, (a)-(e), we show the overall properties of
the steady state solutions. As we increase the laser de-
tuning while keeping the input laser power fixed (points
A → B → C), the phonon number in the mechanical
oscillator rises sharply (plot (e)), signaling the onset of
the self-induced oscillations. This is also reflected in the
mechanical Wigner density WM(x, p). Below the onset
(point “A”), WM(x, p) is a simple Gaussian, which starts
to broaden just below the threshold, as the suscepti-
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bility of the system diverges and quantum fluctuations
are strongly amplified (point “B”). Above the threshold,
we have a coherent state undergoing circular motion in
phase space, but with an undetermined phase, which is
the Wigner density observed at point “C” [15, 17].

However, such a simple picture is inadequate for an
optomechanical system with g0 ∼ κ, i.e. when one ap-
proaches the optomechanical instability deep in the quan-
tum regime [40]. In such a system, we observe that for a
range of detuning ∆ and laser driving αL, the mechanical
self-induced oscillation produces strongly non-classical
states with large negative areas in the Wigner density.
This can be seen in the example of Fig. 1 (d). Nega-
tive rims develop at amplitudes slightly smaller than the
average amplitude of oscillation. Plots (f)-(h) in Fig. 1
analyze negative states more deeply. In state “D”, (f)

shows the mechanical Fano factor F =
〈∆n2

b〉
〈nb〉 dips below

the coherent state value 1, and its phonon number dis-
tribution (g) has a reduced variance. At larger coupling
g = 0.6ωM (h), the negative state exhibits a sharp peak
and a smoother one, as opposed to a single broader peak
of the non-negative state [41]. Overall, (f)-(h) show that
the negative states are closer to a single Fock state or
a superposition of few Fock states as compared with a
coherent state [29]. Note, however, the origin of this non-
classical state is not the same as that in the well-studied
micromaser [30–33]. In the micromaser, the mechanism
relies crucially on the swapping of a single excitation be-
tween an excited atom and cavity over a fixed interaction
time. These features are absent in our system.

Fig. 1 (i) maps out the regions in parameter space
where negative Wigner densities occur. This ‘phase dia-
gram’ is shown as a function of the “quantum parameter”
ζ = g0

κ [15] and of the laser detuning ∆ωM , at a fixed
value of the laser driving strength αL. It has been ob-
tained by solving for the steady state of the optomechan-
ical system under constant illumination, and the Wigner
density is considered as nonclassical if a sufficiently large
area turns out to be negative. The threshold criterion
is a negative area of at least 3% of the positive area,
and the minimum value being at least 5% in absolute
value of the maximum. The numerical results shown
here indicate that, for the parameters considered here,
starting at g0

κ = 0.8, the negative Wigner density states
appear around detuning ∆/ωM = 0, and a second nega-
tive Wigner density region opens up at g0

κ = 1.6, around
∆/ωM = 0.9 at the first blue sideband, where the insta-
bility is driven efficiently. The phonon number distribu-
tion displays a pronounced narrowing, getting closer to
a single or few mechanical Fock states. However, we find
that still many photon/phonon levels are involved in the
dynamics in the regime considered here, and there seems
to be no simple explanation involving only a few levels.

These steady-state non-classical Wigner densities could
be reconstructed via optomechanical QND quadrature

detection [5, 6] and subsequent quantum state tomog-
raphy [34]. This merely involves illumination with an-
other amplitude-modulated laser beam for read-out, as
explained in [6]. When observed, these would provide an
accessible example of non-classical states in a fabricated
mesoscopic mechanical object. To date, there has been
no experimental observation of non-classical Wigner den-
sities in the domain of micro- or nanomechanical struc-
tures. The experiment that came closest to that goal,
and in the process did produce nonclassical mechanical
Fock states, employed a complex multi-layered supercon-
ducting circuit with piezoelectric coupling to a supercon-
ducting qubit and ultrafast pulse sequences [35]. Fur-
thermore in their setup the resonator lifetime is too short
to permit the reconstruction of the full Wigner density.
By contrast, once optomechanical parameters can be im-
proved to reach the single-photon strong coupling regime,
the scheme discussed here would be relatively straightfor-
ward, being based on continuous laser illumination of an
optomechanical setup whose fabrication is much less com-
plex as it involves only one material. Recently a coupling
g0/κ ≈ 0.007 has been achieved in an optomechanical
crystal system [36] and further improvement is expected
in this setup. In addition, there is the possibility that the
parameters required here may be reached in cold atom
optomechanical setups [13, 14].

The full mechanical state reconstruction in the nonlin-
ear quantum regime is an enticing and challenging goal.
Nevertheless, it requires many experimental runs. It will
be helpful to have other means of optically probing the
quantum dynamics of the system around the onset of the
instability. A very suitable probe for the dynamics is
provided by the two-point photon correlation function:

g(2)(t) =
〈â†τ â

†
τ+tâτ+tâτ 〉

(〈â†τ âτ 〉)2
. (3)

〈· · · 〉 denotes the average over ρ̂. Here we employ the
two-point correlator for the intra-cavity photon field, ex-
tractable from our numerical simulations. However, we
emphasize that it can be shown using input-output the-
ory [42] that Eq. 3 also directly provides the g(2) function
for the fluctuations of the output optical field.

In steady state, g(2) does not depend on the initial time
τ . Photon correlations are readily accessible in quan-
tum optics experiments today with single-photon detec-
tors (e.g. using a Hanbury-Brown Twiss setup), and
they have been successfully employed to characterize the
change of photonic statistics upon transmission through
nonlinear systems. The most important example is pho-
ton anti-bunching in the resonance fluorescence of single
photon emitters, which has recently also been predicted
to occur in optomechanical systems for sufficiently strong
coupling [16].

As can be seen in Fig. 2, there are clear signatures in
the photon correlator around the onset of parametric in-
stability (point B). In particular, g(2)(t) persists at some
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FIG. 2: Time-dependence of photon-photon correlations near
the regime of quantum optomechanical oscillations. “A,B,C”
labels the same states as in Fig. 1. These plots show that
there is a remarkably slow long-term decay near the onset of
self-induced oscillations at point “B” (see main text). Inset
also shows the appearance of higher harmonics at point “C”.
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FIG. 3: Quantifying the slow approach of g(2)(t)→ 1 near the
onset of the self-induced oscillations, as observed in Fig. 2.
g(2)(t)−1 obeys an exponential decay e−t/τg in the long-time
limit t → ∞. The inset shows the decay time τg peaking
toward very large values around point B, i.e. ∆ = 0.6ωM .

value above unity over a very long time (middle panel,
Fig. 2). It can be proven (see online supporting materi-
als) that as long as the steady state of the system is not
degenerate, we always have g(2)(t) → 1 + α exp (−t/τg)
in the long-time limit t → ∞. Here the decay rate is
1/τg = Re(λ1), where λ1 is the eigenvalue of the Liou-
ville operator L in Eq. 2 with the largest non-zero real
part, characterizing the slowest decay in the system. This
can be verified by plotting ln(g(2)(t) − 1) to extract τg,
which indeed agrees with the λ1 obtained from L (see
Fig. 3). As can be seen in the inset, τg rises strongly
around the start of the self-induced oscillation (point B).
This is connected to the fact that the overall mechanical
damping rate goes to zero near the Hopf bifurcation [23].

The second signature in g(2) is the appearance of

higher harmonics when the self-induced oscillations are
fully developed (see insets of Fig. 2). To understand
these in a semiclassical picture, we approximate the
photon correlator via the classical intensity correla-
tor, 〈|α(t+ τ)|2|α(τ)|2〉τ . The light amplitude α(t) =
eiφ(t)

∑
n
αne

inωM t is modulated harmonically by the me-

chanical oscillations, as detailed in [23]. In the online
supporting material we show that a fully developed me-
chanical self-induced oscillation results in higher harmon-
ics in g(2). To understand the decay of the resulting
oscillations in the g(2), we take into account the me-
chanical phase diffusion induced by the radiation pres-
sure shot noise. [38] presented the first analysis of the
quantum contribution to phase diffusion in the paramet-
ric instability regime. Here we follow a slightly modified
approach. The phase fluctuates according to δφ(t) =

(mωMA)−1
∫ t

0
dt′ δF (t′) cos(ωM t

′), which yields:

Var(δφ(t)) =
1

(mωMA)2

t

4
(SFF (ωM ) + SFF (−ωM )) ,

where SFF is the force noise spectrum (see [39]). Thus:

〈
|α(t+ τ)|2|α(τ)|2

〉
τ

=

+∞∑
n=−∞

Zne
inωM te−n

2〈δφ(t)2〉/2,

where Zn = |
∑∞
m=−∞ αmα

∗
m−n|2. This theory explains

qualitatively the shape of the correlator even deep in the
quantum regime (see online supporting materials). Fi-
nally, we note that in the red detuned regime, the photon
correlator decay can be described by the optomechanical
cooling rate (see online supporting materials).

To summarize, in this paper we investigated quantum
signatures of light and mechanics for an optomechan-
ical system in the parametric instability regime. We
found that, at strong optomechanical coupling (g0 ∼
κ, g2

0 ∼ (κ · ωM )), for a range of detuning and input
power, the steady state mechanical Wigner density con-
tains strong negative parts, signaling stable non-classical
states. Single-quadrature homodyne measurements can
be used to reconstruct the Wigner density. In addition,
the two-point photon correlator g(2)(t) displays two clear
signatures near the onset of parametric instability. Fi-
nally we explained the slow long-time decay of the photon
correlations as due to the mechanical phase diffusion in-
duced by photon shot noise. One should note that exper-
imental observation of some of these photon correlation
features does not require being in the nonlinear quantum
regime and could succeed even in existing setups.
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