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 We examine the impact of a perpendicular magnetic field on the creation mechanism of 

electron-positron pairs in a supercritical static electric field, where both fields are localized along 

the direction of the electric field.  In the case where the spatial extent of the magnetic field exceeds 

that of the electric field, quantum field theoretical simulations based on the Dirac equation predict 

a suppression of pair creation even if the electric field is supercritical.  Furthermore, an arbitrarily 

small magnetic field outside the interaction zone can bring the creation process even to complete 

halt, if it is sufficiently extended.  The mechanism for this magnetically-induced complete shutoff 

can be associated with a re-opening of the mass gap and the emergence of electrically-dressed 

Landau levels. 
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The possibility to break down the electrodynamical vacuum by an external supercritical 

field to create electron-positron pairs has been one of the most astonishing theoretical predictions 

of quantum electrodynamics [1].  Recent experimental efforts aim at the development of highly 

powered laser systems with the ultimate goal to be able to focus the beam on a minute spot where 

the fields are sufficiently intense to spark the vacuum.  While an experimental observation is still 

challenging, it is clear that the interaction zone will be rather localized. 

Theoretically laser-triggered pair creation has become a hot research topic [2] and many 

works have examined how one could use additional external electric or magnetic fields to control 

the pair creation process [3-8].  The first studies date back to Sauter [9] and Schwinger [10].  In the 

limiting case of an infinitely extended electric field the long-time pair creation rate per volume ΓS 

is given by the Schwinger expression (in atomic units): 

 

 ΓS = E3/2

2π2c1/2 exp − πc3
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The typical spontaneous pair production requires strong electric fields of amplitude 

E≥1.3×1016 V/cm or E≥c3 in atomic units.  We focus in this note on how the pair-creation process 

can be controlled by a static magnetic field that is perpendicular to the supercritical electric field.  

For infinitely extend fields [11], it is possible to Lorentz transform to a reference frame, in which 

the magnetic field vanishes and the electric field is given by Eeff(∞) = √[E2–B2].  In order to 

maintain supercriticality in this case, we require that √[E2–B2] ≥ c3.  This means that the magnetic 

field has to have at least the amplitude B ≥ √[E2–c6] in order to shut off the pair-creation 

mechanism.  

In this Letter we stress the importance of the finite extension of the interaction zone.  It 

turns out that due to this finiteness the pair-creation process can be controlled for magnetic field 

strengths that are much smaller than previously assumed or suggested by the above Lorentz 

transformation based argument.  In fact, we will show that in contrast to the predictions above (for 

homogenous fields) any magnetic field of arbitrarily small strength can bring the pair-creation 

process even to a complete halt, if its spatial extent WB is just sufficiently large. This follows from 

the generalized condition for the onset of supercriticality √[E2WE
2–B2WB

2] ≥ c2, which we will 
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derive below, where WE (or WB) denotes the width of the electric (or magnetic) field.  This shutoff 

scenario is dynamical in the sense that the pair-creation probability reveals an oscillatory behavior 

as a function of time.  Space-time resolved quantum field theoretical simulations permit us to 

relate the shutoff to a re-opening of the mass gap of the Dirac energy spectrum and to associate the 

oscillations with electrically-dressed Landau levels. 

 If the electric field is spatially localized, the Schwinger expression [Eq. (1)] using Eeff(∞) 

becomes invalid as a description solely in terms of the field strength is no longer sufficient and one 

has to incorporate also the corresponding spatial information, or equivalently, choose scalar and 

vector potentials.  Localized interaction zones are characterized by a sharp threshold condition for 

supercriticality that can be expressed only via a potential (such as V>2c2, e.g.) and not in terms of 

the field alone.  According to Eq. (1) any static electric field is capable of creating pairs, even with 

an infinitesmal amplitude.  It is therefore not clear that we obtain a meaningful rate when the peak 

amplitude of a localized field is simply inserted in this formula. 

 To obtain a better estimate for the long-time creation rate we can use an expression, which 

was originally proposed by Hund [12] for the purpose of electric field alone: 

 

 ΓH = 1/(2π) ∫ T(E) dE  (2) 

 

Here T(E) denotes the quantum mechanical transmission coefficient for an incoming electron with 

energy E that scatters off the same supercritical field configuration described by the electric and 

magnetic fields.  In the special case of an infinite interaction zone this approach reproduces Eq. (1).  

Hund’s formula can be generalized if a magnetic field is present.  It turns out that in the limit of 

equal width for electric and magnetic fields, one can describe the scattering in this quantum 

mechanical framework by an effective scalar potential Veff =√[V2–M2] that is related to the peak 

scalar and vector potentials V and M. 

 Quantum field theoretical (QFT) simulations with space-time resolution for external field 

configurations with arbitrary temporal and spatial characteristics are notoriously difficult as the 

requirements on CPU time and memory are presently still exorbitantly high.  However, a recent 

work [13] has introduced a computational algorithm that permits us to study the decay process of 

the vacuum for the case where the magnetic field is perpendicular to the electric field and both 

fields have arbitrary spatial extensions along this polarization direction.  It was shown that the 
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three dimensional dynamics can be reduced to a quasi one-dimensional set of equations. In this 

particular configuration the canonical momentum along the E×B-direction is conserved and just 

has to be integrated over to obtain 3D data for the total pair creation. 

 While these high-performance computations still take several days, they permit us to 

compute time-dependent pair creation probabilities and spatial densities of the created electrons 

and positrons.  In technical terms, a set of coupled time-dependent Dirac equations have to be 

solved repeatedly on a numerical space-time lattice.  The Dirac Hamiltonian is given by  H = c α 

[p-A(r)/c] + c2 β + V(r,t), where α and β are the usual 4×4 Dirac matrices, and the three 

components of the vector potential are given by A(r)=(0,M (tanh(x/WB)+1)/2,0) and the scalar 

potential is V(r,t) = V (tanh(x/WE)+1)/2 f(t).  These assignments correspond to an E- and B-field 

pointing in the x- and z-direction, respectively, and both fields vary along x within a range of about 

2W around x=0.  The temporal pulse shape of the electric field is denoted by f(t).  The maximum 

field strengths (at x=0) are given by E= –dV(x)/dx~V/(2WE) and B = dAy(x)/dx ~ M/(2WB) so V 

and M are measured in c2, W in units of 1/c, and E and B in c3. 

 In order to compute the time-evolution of the electron-positron field operator, the Dirac 

equation has to be solved for each energy eigenstate of the entire Hilbert space associated with the 

Hamiltonian with V=0, but A≠0.  The latter step is based on the development of sufficiently 

efficient split-operator algorithms, for more details see [14].  In these simulations, we have 

assumed that the magnetic field given is present all the time, while the supercritical electric field is 

turned on and off smoothly via f(t).  The data presented below correspond to the pair-creation 

probability after the supercritical field has been turned off.  

 Let us now present the results of these simulations.  In Figure 1 we show the temporal 

growth of the number of created electron-positron pairs N(t) as a function of the interaction time t 

for eight different sizes WB of the magnetic field.  All the other parameters, such as the strengths 

of both fields (E=12.5c3, B=0.6c3) and the size of the electric field (WE=0.1/c) are the same.  All 

curves show an identical short-time behavior, whose details are solely governed by the turn-on 

shape of the supercritical electric field.  The associated created pairs are not necessarily induced by 

supercriticality, but are due to the high frequencies contained in the Fourier spectrum of the 

temporal turn-on pulse.  In principle, these could be minimized by an adiabatic pulse, which due to 

the long interaction time is not practical from a computational point of view. 
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Fig.1    The final number of created electron-positron pairs as a function of the 
interaction time for eight different widths of the magnetic field.  Parameters used 
include E=12.5c3, WE=0.1/c, B=0.6c3.  B=0 case is the upper dashed line.  

 

 To set the scale for our discussion of the long-time behavior, for comparison we have also 

included (dashed curve) the data for B=0.  Due to the fields’ finite extensions the Schwinger rate of 

Eq. (1) does not give an accurate estimation of pair creation rate, but the slope still follows Hund’s 

formula [Eq. (2)].  For example, the slope measured from Fig. 1 according to QFT is 1.461×104 

while ΓH=1.419×104, an agreement within 2.9%.  Please note that in the other eight curves the 

B-field was chosen so small (E/B ≈ 21), such that for WB=WE the asymptotic slope is nearly 

identical to the case for B=0.  This is also consistent with the fact that in this case the effective 

electric field √[E2–B2] (=12.49c3) is only slightly smaller than E itself (=12.5c3). 

 As the simulations are repeated for larger spatial extentions of the magnetic field, the 

situation changes drastically.  The slope (long-term rate of pair creation Γ) of N(t) decreases 

rapidly as we increase WB.  For WB =5WE the slope Γ decreased by 26% from 1.461×104 to 

1.075×104, while for WB =10WE it is only Γ=3.420×103, a 76% reduction.  For comparison, in this 
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range the QFT creation rates Γ are amazingly well described by Hund’s approach, which predicts 

ΓH=1.0458×104 and 3.267×103 for WB =5WE and 10WE.  This corresponds to a mismatch of only 

2.8% and 4.4%, respectively.  If WB≈12.5WE the suppression reaches 100%, corresponding to 

Γ=0 and a complete shutoff of pair creation due the magnetic field.  This shut-off might generalize 

to more complicated geometries where the electric field is also localized in the other two spatial 

directions, as long as it is encompassed by the magnetic field.  It is equally remarkable that for 

even larger values of WB the pair creation starts to exhibit an oscillatory behavior, moving around 

a constant amount.  For this range of WB >1.25/c even the rate predicted by the Hund formula Eq. 

(2) begins to become inapplicable.   

 Let us now illuminate these findings from a spectral perspective.  This will give us a 

physical picture for the mechanisms leading to the shutoff and the associated oscillations and it 

will also provide us with analytical estimates for how the shutoff value for WB and the frequency 

the oscillation depend on the characteristics of the two fields.  To do so we analyze the energy 

eigen-spectrum of the Dirac Hamiltonian where the electric field is turned on.  Prior studies of the 

supercritical breakdown of the vacuum triggered by a supercritical Coulomb field have associated 

the onset condition for supercriticality with the “diving” [1] of the ground state into the continuum 

of negative energy eigenstates.  In our case, a supercritical electric field leads to the complete 

overlap of the positive and negative energy continua.  
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Fig.2       The energy spectrum of the total Hamiltonian as a function of the 
spatial size of the magnetic field WB.  All parameters are the same as in Fig. 1 
(except for numerical box length is 0.6, instead of 1.0 as used in Fig. 1).  The top 
(bottom) figure shows the spectra for py=0 (py=–BWB/c).  It is apparent that 
when WB > 1.25/c the two continua begin to separate from each other.  In the 
band gap area new discrete energy levels emerge.  

 

 

 In Figure 2 we have displayed the numerically obtained energy eigenvalues of H with for 

100 different sizes WB.  We graph only those that are dynamically important for the initial vacuum 

state.  All parameters are identical to those used in Figure 1.  The top figure is for the simpler case 

of py=0 and gives us a first qualitative insight.  For small magnetic field widths WB the black 

regions show the complete overlap between the positive and negative energy states, consistent 

with the fact that the system is supercritical and pairs are created continuously as the positive slope 

Γ in Fig. 1 indicated.  As WB is increased the previously overlapping positive and negative energy 

states start to separate from each other such that the mass gap opens again and also new discrete 

states emerge.   

 A more quantitative picture is obtained for the dynamically most relevant momentum py= 

–BWB/c.  As a result, the continuum edge E+ (= c2 for py=0) curves upwards following 

E+=√[c4+B2 WB
2].  At WB=1.25/c, the mass gap opens.  This is precisely where in Fig.1 the system 

changed from supercritical to subcritical and Γ vanished.  

 The lower continuum edge is described by E–= 2 E WE –√[c4+B2 WB
2] as indicated by the 

dark curve superimposed on the spectra.  The region of supercriticality for finite interaction 

regions is therefore characterized by E+< E–, or equivalently by √[E2WE
2–B2WB

2] ≥ c2, as we 

mentioned in the introduction.  From this generalized condition for supercriticality we can easily 

set √[E2WE
2 – B2WB

2] = c2 to determine the characteristic shutoff width for the magnetic field, 

denoted by WB†.  It corresponds to the crossing point of both continua, E+=E–, and we obtain 

WB†=B-1 √(E2WE
2–c4).  In other words, even the most minute magnetic field strength B is fully 

sufficient to turn the entire pair creation process off, if its spatial size WB is chosen only 

sufficiently large, WB>WB†. 
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 In addition to the separation of the two continua, the data in Fig. 2 reveal a new set of 

discrete states that emerge as the width WB is increased beyond WB†.  While the two continuum 

edges E+ and E– are symmetric around energy E WE, the energies of the dynamically relevant 

discrete states are not.  This is because the positive and negative energy states with the same spin 

have different magnetic moments.  From Fig. 2 we find the first bound level (with negative energy) 

occurs at WB≥ 1.498/c while the next several levels (with alternating signs of energy) require 

WB≥2.104/c, 2.504/c, 2.891/c, 3.194/c, 3.495/c, 3.703/c, respectively.  We have assigned these 

discrete states with the quantum numbers n± and the corresponding energies E(n±).  While each 

continuum and discrete state in Fig. 2 is a complicated superposition of free energy eigenstates 

with positive and negative energies one could view the discrete states as electrically dressed 

Landau levels.    

 The actual energies of the discrete levels at each WB value in Fig. 2 permit us also to 

estimate the frequencies for N(t) in Fig. 1.  For example, for WB=3/c the energies of the ground 

state of the negative levels and the ground state of the positive levels would predict an oscillation 

period of 2π/(E(0+)–E(0–)) = 5.47×10–4, which agrees (within 2%) with the observed period of 

5.36×10–4 in Fig. 1.  For WB →∞, the period approaches 2π/( c4 + 4Bc – 2.5c2 + c4 + 2Bc ), 

which for our value of B is 4.05×10–4. 

 In the limit of WB→∞, the energies become independent of WB and approach 

asymptotically the values E(n+)= ε2n+1
+  and E(n–)= ε2n+1

– +V0, where n
±ε  = ± c4 + (2n +1+ σ)Bc   

are the (positive and negative) energy Landau levels with σ = +1 or –1.  Here we choose different 

values of σ for the positive and negative energies to keep the spin the same, as transition between 

the positive and negative energy manifolds does not change the spin.  Here E(n±) denotes the n-th 

positive (n+) or negative (n–) discrete state in Fig. 2, while n
±ε  represents the n-th positive ( n

+ε ) or 

negative ( n
−ε ) Landau level, respectively.  The scalar potential can be regarded essentially as a step 

jump with magnitude V.  As V is sufficiently large, the effective potential in the combined electric 

and magnetic fields becomes a half of a harmonic potential, which is closed on one end by a steep 

potential wall.  In such a potential, the wave function must vanish at the potential wall.  As a result 
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the Landau levels with n = 0, 2, 4… are absent and only odd orders survive.  

 To see the validity of the above energy formula for large magnetic field widths we pick 

n+=0 to find E(0+)=1.84c2.  Compare this energy value with the energy for the corresponding 

positive state of the largest WB in Fig.2, 1.78c2, the deviation amounts to only 3.37%.  For n+=1, 

the deviation between E(1+)=2.41c2 and the corresponding numerical energy of 2.23c2 is 3.59%.  

For the negative level of n–=0, the deviation between E(0–)=1.02c2 and the corresponding 

numerical energy of 1.08c2 is 5.56%. 

 To summarize, we have shown that the pair-creation process in a supercritical electric field 

of finite extension can be remarkably sensitive to very small magnetic fields, if their direction is 

chosen perpendicular to the electric field.  This finite size phenomenon cannot be predicted by 

Schwinger-like rate formulas in terms of traditional effective electric fields or Hund’s 

generalizations.  The complete shutoff is related to a re-opening of the mass gap when the 

magnetic field’s width exceeds the cyclotron radius.  This condition should be realized rather 

easily experimentally once the required supercritical electric fields become available in the lab. 

For instance, a magnetic field with WB ≈1cm can inhibit pair creation, if its magnitude is only 

0.2T, which is 200 times smaller than the magnetic fields available in the labs [15].  While the 

numerical values that we used in this note were used for computational convenience only and serve 

as a proof of principle, the explicit analytical estimates are scalable to the parameters for the 

expected experiments. 

 This work raises also several interesting questions.  For example, the onset of the shutoff is 

related to the corresponding classical gyration radius and one could therefore conjecture that some 

aspects of the suppression mechanism is related to the fermionic Pauli-blocking, where the 

magnetically induced-trapping permits the electrons and positrons to return to the supercritical 

interaction zone.  If Pauli-blocking were a key mechanism, then a simulation based on the 

corresponding bosonic system should result in an exponential enhancement [16] of pair-creation 

for these field configurations.  Could this found sensitivity due to finite size also be used to 

enhance the electron-positron pair creation?  Prior works have shown that if the magnetic field 

direction is other than perpendicular or even time-dependent, the rates could be enhanced. 
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